Skip to main content

Electrophysiological Methods Applied in Nervous System Cultures

  • Protocol
The Neuronal Microenvironment

Part of the book series: Neuromethods ((NM,volume 9))

  • 2803 Accesses

Abstract

This chapter describes the application of electrophysiological techniques in nervous system cultures. The characterization of the membrane properties of cultured neural cells with electrophysiological techniques had already started in 1956 on explant cultures of dorsal root ganglion cells (Crain, 1956) and on glial cells from the cerebellum and midbrain of the kitten (Hild et al., 1958). Subsequently, membrane properties of neurons and glial cells from different areas of the brain were characterized with a combination of electrophyslological, morphological, and immunocytochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baer S. C. and Crain S. M. (1971) Magnetically coupled micromanipulator for use within a sealed chamber. J. Appl. Physiol. 31, 926–929.

    PubMed  CAS  Google Scholar 

  • Barker J. L. and Mathers D A. (1981) GABA analogues activate channels of different duration on cultured mouse spinal neurons. Science 212, 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. L. and McBurney R. N. (1979) GABA and glycine may share the same conductance channel on cultured mammalian neurones. Nature 277, 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. L. and Ransom B. R. (1978) Amino acid pharmacology of mammalian central neurones grown in tissue culture. J. Physiol. 280, 331–354.

    PubMed  CAS  Google Scholar 

  • Bevan S. and Raff M. (1985) Voltage-dependent potassium currents in cultured astrocytes. Nature 315, 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Bignami A. and Dahl D. (1974) Astrocyte-specific protein and neuroglial differentration An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp Neurol. 153, 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Black P. and Kornblith P. L. (1980) Biophysical properties of human astrocytic brain tumor cells in cell culture. J. Cell. Physiol. 105, 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein M. B. (1958) Reconstrtuted rat-tail collagen used as a substrate for tissue cultures on covershps in Maximow slides and roller tubes. Lab Invest. 7, 134–137.

    PubMed  CAS  Google Scholar 

  • Bowman C. L. and Kimelberg H. K. (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture Nature 311, 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Brown T. H., Perkel D. H., Norris J. C., and Peacock J. H. (1981) Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J. Neurophysiol 45, 1–15.

    PubMed  CAS  Google Scholar 

  • Calvet M.-C. (1974) Patterns of spontaneous electrical activity in tissue cultures of mammalian cerebral cortex vs cerebellum, Brain Res 69, 281–295.

    Article  PubMed  CAS  Google Scholar 

  • Calvet M.-C. and Calvet J. (1979) Horseradish peroxrdase iontophoretic intracellular labelling of cultured Purkinje cells. Brain Res 173, 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Calvet M.-C., Calvet J., and Camacho-Garcia R (1985) The Purkmje cell dendritic tree: A computer-aided study of its development in the cat and in culture. Brain Res 331, 235–250.

    Article  PubMed  CAS  Google Scholar 

  • Chiu S Y., Schrager P., and Rltchie J. M. (1984) Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature 311, 156–157.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. and Fischbach G. D. (1981) GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J. Neurophysiol. 45, 605–620.

    PubMed  CAS  Google Scholar 

  • Corrigall W. A, Crain S. M., and Bornstein M. (1976) Electrophysiological studies of fetal mouse olfactory bulb explants during development of synaptic functions in culture. J. Neurobiol. 7, 521–536

    Article  PubMed  CAS  Google Scholar 

  • Crain S. M. (1956) Resting and action potentials of cultured embryo chick spinal ganglion cells. J. Neurol. 104, 285–329

    CAS  Google Scholar 

  • Crain S. M. (1973) Microelectrode Recording in Brain Tissue Cultures, in Methods in Physiological Psychology: Bioelectric Recording Techniques: Cellular Processes and Brain Potentials (Thompson R. and Patterson M. M., eds.) Academic, New York.

    Google Scholar 

  • Crain S and Peterson E. R. (1967) Onset and development of functional interneuronal connections in explants of rat spinal cord-ganglia during maturation in culture. Brain Res. 6, 750–762.

    Article  PubMed  CAS  Google Scholar 

  • Crain S. M. and Peterson E. R. (1974) Development of specific sensory-evoked synaptic networks in fetal mouse spinal cord-brainstem cultures. Science 188, 275–278.

    Article  Google Scholar 

  • Dichter M.A (1977) Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149, 279–293.

    Article  Google Scholar 

  • Dichter M. A. (1980) Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res. 190, 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Dimpfel W., Pierau F.-K., and Haider S. G. (1979) Electrophysiological Studies on the Effects of the Neurotoxin Apamin on Cultured Neurons, in Advances in Cytopharmacology (B. Ceccarelli and F. Clementi, eds.) Raven, New York.

    Google Scholar 

  • Dreyfus C. F., Gershon M D., and Crain S. M. (1979) Innervation of hippocampal explants by central catecholaminergic neurons in co-cultured fetal mouse brain stem explants. Brain Res. 161, 431–445.

    Article  PubMed  CAS  Google Scholar 

  • Eng L. F., Vanderhagen J. J., Bignami A., and Gertl B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Fields K. L. (1980) The study of Schwann cells using antigenic markers. Trends Neurosci. 3, 236–238.

    Article  Google Scholar 

  • Fischbach G. D. and Nelson P. G. (1977) Cell Culture in Neurobiology, in Cellular Biology of Neurons, The Handbook of Physiology (Kandel E. R., ed.) Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Fischer G. and Kettenmann H. (1985) Cultured astrocytes form a syncytium after maturation. Exp. Cell Res. 159, 73–279.

    Article  Google Scholar 

  • Fischer G. and Wieser R. J. (1983) Hormonally Defined Media: A Tool in Cell Biology Springer Verlag, Heidelberg.

    Google Scholar 

  • Fischer G., Leutz A., and Schachner M. (1982) Cultivation of immature astrocytes in a serum-free, hormonally defined medium. Neurosci. Lett. 29, 97–302.

    Article  Google Scholar 

  • Fischer G., Kunemund V., and Schachner M. (1986) Neurite outgrowth pattern in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotem Ll. J. Neurosci. 6, 605–612

    PubMed  CAS  Google Scholar 

  • Freschi J.E. (1983) Membrane currents of cultured rat sympathetic neurons under voltage clamp. J. Neurophysiol. 50, 460–478.

    Google Scholar 

  • Fromm M., Weskamp P. and Hegel U. (1980) Versatile piezoelectric driver for cell puncture. Pflugers Arch. 384, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Frosch M. P. and Dichter M. A. (1984) Physiology and pharmacology of olfactory bulb neurons in dissociated cell culture. Brain Res 290, 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Furshpan E. J., MacLeish P. R., O’Lague P. H., and Potter D. D. (1976) Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurones. Proc. Natl. Acad. Sci. USA 73, 4225–4229.

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler B. H. (1975) The effects of GABA, picrotoxin and bicucullin on the spontaneous bioelectric activity of cultured cerebellar Purkinje cells. Brain Res. 99, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler B. H. (1976) Spontaneous bioelectric activity of cultured Purkinje cells during exposure to glutamate, glycine, and strychnine. J. Neurobiol. 2, 97–107.

    Article  Google Scholar 

  • Gahwiler B. H. (1978) Mixed cultures of cerebellum and inferior olive: Generation of complex spikes in Purkinje cells. Brain Res. 145, 168–172.

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler B. H. (1981) Labeling of neurons within CNS explants by intracellular injection of Lucifer Yellow. J. Neurobiol. 2, 187–191.

    Article  Google Scholar 

  • Gahwiler B. H. and Bauer W. (1975) Design of a temperature controlled microchamber for electrophysiological experiments in vitro. Separatum Experientia 31, 369.

    Article  Google Scholar 

  • Gahwiler B. H., Mamoon A. M., Schlapfer W. T., and Tobias C. A. (1972) Effects of temperature on spontaneous bioelectric activity of cultured nerve cells. Brain Res. 40, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert P., Kettenmann H., Orkand R. K., and Schachner M. (1982) Immunocytochemical cell identification in nervous system culture combined with intracellular injection of a blue fluorescing dye (SITS). Neurosci Lett. 334, 123–128.

    Article  Google Scholar 

  • Gilbert P., Kettenmann H., and Schachner M. (1984) Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes. J Neurosci. 4, 561–569.

    PubMed  CAS  Google Scholar 

  • Godfrey E. W., Nelson P. G., Schrier B. K., Breuer A. C., and Ransom B. R. (1975) Neurons from fetal rat brain in a new cell culture system: A multidisciplinary analysis. Brain Res 90, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Gross G.W. (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Transact. Biomed. Eng. 26, 273–279.

    Article  CAS  Google Scholar 

  • Gross G. W. and Lucas J. H. (1982) Long-term monitoring of spontaneous single unit activity from neuronal monolayer networks cultured on photoetched multielectrode surfaces. J Electrophysiol. Tech. 9, 55–67.

    Google Scholar 

  • Gross G. W., Rieske E., Kreutzberg G. W., and Meyer A. (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett. 6, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Hamill O. P, Marty A., Neher E., Sakmann B., and Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hicks T P. (1984) The history and development of microiontophoresis in experimental neurobiology. Prog. Neurobiol. 22, 185–240.

    Article  PubMed  CAS  Google Scholar 

  • Hild W., Chang J. J., and Tasaki I. (1958) Electrical responses of astrocytic gha from the mammalian central nervous system cultivated in vitro. Experientia 14, 220–221.

    Article  PubMed  CAS  Google Scholar 

  • Hirata H., Slater N. T., and Kimelberg H. K. (1983) Alpha-adrenergic receptor-mediated depolarization of rat neocortical astrocytes in primary culture. Brain Res. 270, 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Hogue M. J (1947) Human fetal brain cells in tissue culture: Their identification and motility. J Exp. Zool. 106, 85–107.

    Article  PubMed  CAS  Google Scholar 

  • Hosli L., Andres P. F., and Hosli E (1978) Neuron-glia interactions: Indirect effect of GABA on cultured glial cells. Exp. Brain Res. 33, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Hosli L., Hosli E., Landolt H., and Zehntner C. (1981) Efflux of potassium from neurones excited by glutamate and aspartate causes a depolarization of cultured glial cells. Neurosci. Lett. 21, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Keilhauer G., Meter D. H., Kuhlmann-Krieg S., Nieke J., and Schachner M. (1985) Astrocyte support incomplete differentiation of an oligodendrocyte precursor cell. EMBO J. 44, 2499–2504.

    Google Scholar 

  • Kettenmann H. (1985) A reversible decrease in electrical coupling of cultured mouse glial cells induced by superfusion from a micropipette. Neurosci Lett. 59, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H. and Orkand R. K. (1983) Intracellular SITS injection dye-uncouples mammalian oligodendrocytes in culture. Neurosci. Lett 39, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H. and Schachner M. (1985) Pharmacological properties of GABA, glutamate and aspartate induced depolarizations in cultured astrocytes. J. Neurosci 5, 3295–3301.

    PubMed  CAS  Google Scholar 

  • Kettenmann H., Orkand R K., Lux H. D., and Schachner M. (1982) Single potassium channel currents in cultured mouse oligodendrocytes. Neurosci. Lett. 32, 41–46

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H., Backus H., and Schachner M. (1984a) Aspartate, glutamate and gamma-ammobutyric acid depolarize cultured astrocytes. Neurosci Lett. 52, 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Orkand R K., and Lux H. D (1984b) Some properties of single potassium channels in cultured oligodendrocytes Pflugers Arch. 400, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H., Sonnhof U., Camerer H., Kuhlmann S., Orkand R. K, and Schachner M. (1984c) Electrical properties of oligodendrocytes in culture. Pflugers Arch. 401, 324–332

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Sommer I., and Schachner M (1985) Monoclonal cell surface antibodies do not produce short-term effects on electrical properties of mouse oligodendrocytes in culture Neurosci Lett. 54, 195–199

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H., Backus K H., and Schachner M. (1987) GABA opens chloride channels in cultured astrocytes. Brain Res. 404, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H., Orkand R. K., and Schachner M. (1983a) Coupling among identified cells in mammalian nervous system cultures. J. Neurosci. 3, 506–516.

    PubMed  CAS  Google Scholar 

  • Kettenmann H., Sonnhof U., and Schachner M. (1983b) Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes. J. Neurosci. 3, 500–505.

    PubMed  CAS  Google Scholar 

  • Kettenmann H., Wiennch M., and Schachner M. (1983c) Antibody Ll elected from a micropipette identifies neurons without altering electrical activity. Neurosci Left. 41, 85–90.

    Article  CAS  Google Scholar 

  • Kimelberg H. K., Bowman C., Biddlecome S, and Bourke R. S. (1979) Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res. 177, 533–550

    Article  PubMed  CAS  Google Scholar 

  • Kruse P. F. and Patterson M. K (1973) Tissue Culture: Methods and Application Academic, New York.

    Google Scholar 

  • Macdonald R. L. and auJ. L. Barker (1981) Neuropharmacology of Spinal Cord Neurons in Primary Dissociated Cell Culture, in Excitable Cells in Tissue Culture (Nelson P. D. and Lieberman M., eds.) Plenum, New York.

    Google Scholar 

  • MacVicar B. A. (1984) Voltage-dependent calcium channels in glial cells. Science 226, 1345–1347

    Article  PubMed  CAS  Google Scholar 

  • Mains R. E. and Patterson P H. (1973) Primary cultures of dissociated sympathetic neurons. J. Cell Biol 59, 329–345

    Article  PubMed  CAS  Google Scholar 

  • Manthorpe M., Engvall E, Ruoslathi E., Longo F, Davis G. E., and Varon S. (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J, Cell Biol. 97, 1882–1890.

    Article  CAS  Google Scholar 

  • Mathers D. A and Barker J. L (1981) GABA and muscimol open ion channels of different lifetimes on cultured mouse spinal cord cells. Brain Res. 204, 242–247.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy D. and de Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J, Cell. Biol. 85, 890–902.

    Article  CAS  Google Scholar 

  • Meier D. H., Lagenaur C., and Schachner M. (1982) Immunoselection of oligodendrocytes by magnetic beads. I. Determination of antibody coupling parameters and cell binding conditions. J. Neuroscience Res. 7, 119–134.

    Article  CAS  Google Scholar 

  • Moonen G. and Nelson P G. (1978) Some Physiological Properties of Astrocytes in Primary Cultures, in Dynamic Properties of Glial Cells (Schoffeniels E., Frank G., Hertz L., and Tower D B. L., eds.) Pergamon, London.

    Google Scholar 

  • Moonen G., Neale E A, Macdonald R. L., Gibbs W, and Nelson P. G. (1982) Cerebellar macroneurons in microexplant cell culture. Methodology, basic electrophysiology, and morphology after horseradish peroxidase injection. Dev Brain Res 5, 59–73.

    Article  Google Scholar 

  • Neale E. A, Macdonald R. L., and Nelson P. G. (1978) Intracellular horseradish peroxidase injection for correlation of light and electron microscopic anatomy with synaptic physiology of cultured mouse spinal cord neurons. Brain Res. 152, 265–282.

    Article  PubMed  CAS  Google Scholar 

  • Nelson P. G. (1975) Nerve and muscle cells in culture. Physiol. Rev., 55, 1–61.

    Article  PubMed  CAS  Google Scholar 

  • Nelson P. G. and Lieberman M. (1981) Excitable Cells in Tissue Culture Plenum, New York

    Google Scholar 

  • Nelson P G and Peacock J H. (1973) Electrical activity in dissociated cell cultures from fetal mouse cerebellum. Brain Res. 61, 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Nelson P. G., Ransom B. R., Henkart M., and Bulloch P. N. (1977) Mouse spinal cord in cell culture. IV. Modulation of inhibitory synaptic function. J. Newophysiol. 40, 1178–1186.

    CAS  Google Scholar 

  • O’ Lague P. H., Potter D. D, and Furshpan E. J. (1978a) Studies on rat sympathetic neurons developing in cell culture. I. Growth characteristics and electrophysiological properties. Dev. Biol. 67, 384–403.

    Article  Google Scholar 

  • O’ Lague P H., Furshpan E. J., and Potter D. D. (1978b) Studies on rat sympathetic neurons developing in cell culture. Dev. Biol. 67, 404–423.

    Article  Google Scholar 

  • O’ Lague P. H., Potter D. D., and Furshpan E. J (1978c) Studies on rat sympathetic neurons developing in cell culture. III. Cholinergic transmission. Dev Biol. 67, 424–443.

    Article  Google Scholar 

  • Orkand R. K (1977) Glial Cells, in Cellular Biology of Neurons, The Handbook of Physiology (Kandel E. R., ed.) Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Patrick J., Heinemann S., and Schubert D. (1978) Biology of cultured nerve and muscle. Ann. Rev Neurosci. 1, 417–443.

    Article  PubMed  CAS  Google Scholar 

  • Patterson P H. (1978) Environmental determination of autonomic neurotransmitter functions. Ann Rev. Neurosci 1, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Peacock J. H. (1979) Electrophysiology of dissociated hippocampal cultures from fetal mice. Brain Res. 169, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Peacock J. H, Nelson P. G., and Goldstone M.W (1973) Electrophysiologic study of cultured neurons dissociated from spinal cords and dorsal root ganglia of fetal mice. Dev Biol. 30, 137–152

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S. E. (1982) Neuroscience Approach to Cell Culture, CRC, Boca Raton, Florida.

    Google Scholar 

  • Pitman R. M., Tweedle C.D., and Cohen M. J (1972) Branching of central neurons. Intracellular cobalt injection for light and electron microscopy. Science 176, 412–414.

    Article  PubMed  CAS  Google Scholar 

  • Podulso S. E. and Norton W. T. (1972) Isolation and some chemical properties of oligodendroglia from calf brain. J Newochem. 19, 727–736.

    Google Scholar 

  • Rall W. (1977) Core Conductor Theory and Cable Properhes of Neurons, in Cellular Biology of Neurons, The Handbook of Physiology (Kandel E. R., ed.) Williams & Wilkins, Baltimore.

    Google Scholar 

  • Raff M. C., Field K L, Hakomori S-I, Mirsky R., Pruss R. N, and Winter J. (1979) Cell type specific markers for distinguishing and studying neurons and major classes of glial cells in culture. Brain Res. 174, 283–308.

    Article  PubMed  CAS  Google Scholar 

  • Ransom B. R., and Holz R. W. (1977) Ionic determinants of excitability in cultured mouse dorsal root ganglion and spinal cord cells. Brain Res. 136, 445–453.

    Article  PubMed  CAS  Google Scholar 

  • Ransom B. R., Neale E., Henkart M., Bullock P. N., and Nelson P. G. (1977a) Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic properties. J. Neurophysiol 5, 1132–1150.

    Google Scholar 

  • Ransom B. R., Christian N, Bullock P. N., and Nelson P. G. (1977b) Mouse spinal cord in cell culture. II. Synaptic activity and circuit behaviour. I. Neurophysiol. 5, 1151–1162.

    Google Scholar 

  • Ransom B. R., Bullock P. N., and Nelson P. G. (1977c) Mouse spinal cord in cell culture. III. Neuronal chemosensitivity and its relationship to synaptic activity. J. Neurophysiology 5, 1163–1177.

    Google Scholar 

  • Rathjen F. G. and Schachner M (1984) Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 3, 1–10.

    PubMed  CAS  Google Scholar 

  • Sakmann B. and Neher E. (1983) Single Channel Recording Plenum, New York.

    Google Scholar 

  • Sakman B. and Neher E. (1984) Patch clamp techniques for studying ionx channels in excitable membranes. Ann Rev. Physiol 46, 455–472.

    Article  Google Scholar 

  • Schachner M (1982a) Cell type-specific surface antigens in the mammalian nervous system J Neurochem 39, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Schachner M. (1982b) Glial antigens and the expression of neuroglial phenotypes. Trends Neurosci. 5, 225–229.

    Article  Google Scholar 

  • Schachner M. (1984) Cell Type-Specific Antigens in the Mammalian Nervous System, in Molecular Biology Approach to the Neurosciences (H. Soreq, ed.) John Wiley, New York.

    Google Scholar 

  • Schachner M., Kim S. U, and Zehnle R. (1981a) Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies. Dev Biol 83, 328–338

    Article  PubMed  CAS  Google Scholar 

  • Schachner M., Sommer I., Lagenaur C and Schmtzer J. (1981b) Monoclonal Antibodies Recognizing Subpopulations of Glial Cells in Mouse Cerebellum, in Monoclonal Antibodies Against Neural Antigens Cold Spring Harbor Reports in the Neurosciences (R. McKay, M. Raff, and L. Reichardt, eds.) Cold Spring Harbor, Long Island.

    Google Scholar 

  • Schachner M., Sommer I., Lagenaur C and Schnitzer J. (1982) Developmental Expression of Antigenic Markers, in Glial Subclasses, in Neuronal-Glial Cell lnterrelationships (T. Sears, ed.) Life Sciences Research Report, vol. 20, Springer Verlag, Berlin.

    Google Scholar 

  • Schachner M., Sommer I., Lagenaur C, Schnitzer J., and Berg G. (1983) Antigenic Markers of Glia and Glial Subclasses, in Current Frontiers in Neurobiology Approached Through Cell Culture (S. E. Pfeiffer, ed.) Vol. 2, CRC, Boca Rotan, Florida.

    Google Scholar 

  • Schlapfer W. T. (1978) Tissue and Organ Culture, in Methods in Neurobiology (R. Lahue, ed) Plenum, New York

    Google Scholar 

  • Schnitzer J and Schachner M. (1981a) Characterization of isolated mouse cerebellar cell populations in vitro. J. Neuroimmunol. 1, 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer J. and Schachner M. (1981b) Developmental expression of cell type-specific markers in mouse cerebellar cells in vitro. J Neuroimmunol. 1, 471–487.

    Article  PubMed  CAS  Google Scholar 

  • Shrager P., Chiu S. Y., and Ritchie J. M. (1985) Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc. Natl. Acad. Sci. USA 82, 948–952.

    Article  PubMed  CAS  Google Scholar 

  • Sommer I. and Schachner M. (1981) Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system. Dev Biol. 83, 311–327.

    Article  PubMed  CAS  Google Scholar 

  • Sommer I. and Schachner M. (1982) Cells that are 04 antigen-positive and 01 antigen-negative differentiate into 01 antigen-positive oligodendrocytes. Neurosci Lett 29, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Sonnhof U. and Schachner M (1986) Single voltage dependent K+-channels in cultured astrocytes. Neurosci Lett. 64, 241–246

    Article  PubMed  CAS  Google Scholar 

  • Sonnhof U., Forderer R., Schneider W., and Kettenmann H. (1982) Cell puncturing with a step motor driven manipulator with simultaneous measurement of displacement. Pflugers Arch 392, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Stewart W. W. (1981) Lucifer dyes-highly fluorescent dyes for biological tracing Nature 292, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Walz W., Wuttke W., and Hertz L. (1984) Astrocytes in primary cultures. Membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Res. 292, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Wardell W. M. (1966) Electrical and pharmacological properties of mammalian neuroglial cells in tissue-culture. Proc. Roy Soc. Lond. (Bio1.) 165, 326–361

    Article  CAS  Google Scholar 

  • Weber A. and Schachner M. (1984) Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture. Brain Res. 311, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Weir D. M. (1978) Handbook of Experiemental immunology vol. I, Immunochemistry Blackwell Scientific, Oxford.

    Google Scholar 

  • Werz W. and Schachner M. (1987) Extracellular matrix molecules promote neuronal outgrowth of cerebelar cells (in preparation).

    Google Scholar 

  • Wienrich M. and Kettenmann H. (1984) Intrazellulare Farbstoffe zur Markierung einzelner neuraler Zellen in Kultur. Kontukte (Darmstadt) 3, 30–44.

    Google Scholar 

  • Yavin E. and Yavin Z. (1974) Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on poly-L-lysine coated surface. J. Cell Biol. 62, 540–546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Kettenmann, H. (1988). Electrophysiological Methods Applied in Nervous System Cultures. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:493

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:493

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics