Skip to main content

Analysis of Ion Fluxes and Fluid Compartmentation in Brain Slices

  • Protocol

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

Brain slices from cerebral cortex represent the classical model with which the first studies of cellular mechanisms of water and ion homeostasis were conducted. These experiments involved the analysis of ion and water movements with radiotracers. The amount of information gained with this approach has been summarized in reviews by Marchbanks (1970), Katzman and Pappius (1973), and Hertz and Schousboe (1975). The difficulty of this method is, however, clearly apparent: Compromised energy metabolism of the cells leads to swelling and changes in the sodium:potassium ratio. In addition even the most healthy slices contain 25% dead cells. The radiotracer methods give information about different compartments in the whole tissue; therefore one can not correct readily for the compromised metabolic function. In contrast, sophisticated electrophysiological methods are now available for the measurement of extracellular and intracellular functions in brain slices (see chapters by Nicholson and Rice and by MacVicar and O’Beirne in this volume). Here, individual cells can be tested before the experiment if they conform to certain standards. The inevitable cell swelling that creates certain difficulties for the interpretation of compartmental fluxes seems not to compromise the electrophysiological function of individually tested neurons. With the use of homogeneous primary cultures of neural cells, an alternative system with fewer limitations became available. Brain slices have, however, gained new popularity in measuring energy metabolism and electrical transmission in certain pathological states induced by anoxia, hypoglycemia, and ischemia (see Lipton and Whittingham, 1984). In this context, analyses of fluid compartments and ion fluxes are quite frequently used to give a more complete picture about events involved in such states.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Alger B. E., Dhanjal S. S., Dingledine R., Garthwaite J., Henderson G., Kmg G. L., Lipton I’., North A., Schwartzkroin P. A., Sears T. A., Segal M., Whittingham T. S., and Williams J. (1984) Brain Slice Methods, in Brain Slices (Dingledine R., ed.) Plenum, New York.

    Google Scholar 

  • Amtorp O. (1979) Distribution of mulin, sucrose and manmtol in rat brain cortex slices following in vivo or in vitro equilibration. J. Physlol. 294, 81–90.

    CAS  Google Scholar 

  • Arnfred T., Hertz L, Lolle L., and Lund-Andersen H. (1970) An improved holder for transfer of brain slices during in vitro incubation. Exp. Brain Res 11, 373–375.

    Article  PubMed  CAS  Google Scholar 

  • Bachelard H. S., Campbell W. J., and McIlwam H. (1962) The sodium and other ions of mammalian cerebral tissues, maintained and electrically stimulated in vitro. Biochem J. 84, 225–232.

    PubMed  CAS  Google Scholar 

  • Bak I. J., Misgeld U., Weiler M., and Morgan E. (1980) The preservation of nerve cells in rat neostriatal slices maintained in vitro: A morphological study. Bram Res. 197, 341–353.

    Article  CAS  Google Scholar 

  • Becker N. H., Huano A., and Zimmerman H. M. (1968) Observations of the distribution of exogenous peroxidase in the rat cerebrum. J, Neuropathol. Exp. Neural. 27, 439–452.

    Article  CAS  Google Scholar 

  • Bourke R. S. and Tower D. B. (1966) Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. I. Swelling and solute distribution in mature cerebral cortex. J, Neurochem 13, 1071–1097.

    Article  CAS  Google Scholar 

  • Bygrave F. L. (1977) Mitochondrral Calcium Transport, in Current Topics in Bioenergefics vol. 6 (Sanadi D, ed.) Academic, New York

    Google Scholar 

  • Cohen S. R. (1972) The Estimation of Extracellular Space of Brain Tissue In Vitro, in Research Methods in Neurochemistry vol 1 (Marks N. and Rodnight R., eds.) Plenum, New York.

    Google Scholar 

  • Cohen S. R. (1974) The contribution of adherent films of liquid on the cut surfaces of mouse brain slices to tissue water and “extracellular” marker spaces. Exp. Brain Res 20, 421–434

    PubMed  CAS  Google Scholar 

  • Cohen S. R., Blasberg R., Levi G., and Laltha A. (1968) Compartmentation of the inulin space in mouse brain slices. J. Neurochem. 15, 707–720.

    Article  PubMed  CAS  Google Scholar 

  • Cooke W. J. and Robmson J, D (1971) Factors influencing calcium movements in rat brain slices. Am J. Physzol. 221, 218–225.

    CAS  Google Scholar 

  • Cummins Y. T. and McIlwain H. (1961) Electrical pulses and the potassium and other ions of isolated cerebral tissues. Biochem. J. 79, 330–341.

    PubMed  CAS  Google Scholar 

  • Fujii T., Baumgartl H., and Lubbers D. W. (1982) Limiting section thickness of guinea pig olfactory cortical slices studied from tissue pO2 values and electrical activities. Pflugevs Arch. 393, 83–87.

    Article  CAS  Google Scholar 

  • Fulii T., Buerk D. G, and Whalen W. J. (1981) Activation energy in the mammalian brain slice as determined by oxygen microelectrode measurement. Jpn. J. Physzol. 31, 279–283.

    Google Scholar 

  • Garthwaite J, Woodhams P L., Collins M. J., and Balazs R. (1979). On the preparation of brain slices: Morphology and cyclic nucleotides. Brain Res. 173, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L. and Frank G. (1978) Effect of Increased Potassium Concentrations on Potassium Fluxes in Brain Slices and in Glial Cells, in Dynamic Properties of Glial Cells (Schoffeniels E. G. Franck, D. B. Tower, and L. Hertz, eds.) Pergamon, Oxford.

    Google Scholar 

  • Hertz L. and Schousboe A. (1975) Ion and Energy Metabolism of the Brain at the Cellular Level, in International Review of Neurobrology vol. 18 (Pfeiffer C. C. and Smythies J. R., eds.) Academic, New York.

    Google Scholar 

  • Hopkins J, and Neal M. J, (1971) Effect of electrical stimulation and high potassium concentrations on the efflux of [14C] glycine from slices of spinal cord. Br. J. Pharmacol. 42, 215–223.

    Google Scholar 

  • Jefferys J. G. R. (1981) The Vibroslice, a new vibrating blade tissue slicer. J Physiol. 324, 2P.

    Google Scholar 

  • Katzman R. and Pappius H. M. (1973) Brain Electrolytes and Fluid Metabobsm. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Keesey J. C. and Wallgren H. (1965) Movements of radioactive sodium in cerebral-cortex slices in response to electrical stimulation. Biochem. J. 95, 301–310.

    PubMed  CAS  Google Scholar 

  • Keesey J. C., Wallgren H., and McIlwain H. (1965) The sodium, potassium and chloride of cerebral tissues: Maintenance, change on stimulation and subsequent recovery. Biochem J 95, 289–300.

    PubMed  CAS  Google Scholar 

  • Kimelberg H K. (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta 646, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kulka R. G. (1956) Calorimetric estimation of ketopentoses and ketohexoses. Biochem. J. 63, 542–548.

    PubMed  CAS  Google Scholar 

  • Lipton P. (1985) Brain Slices, in Neuromethods vol. 1 (Boulton A. A. and Baker G. B., eds.) Humana, Clifton, New Jersey.

    Google Scholar 

  • Lipton P. and Whittingham T. S. (1984) Energy Metabolism and Brain Slice Function, in Brain Slices (Dingledine R., ed.) Plenum, New York.

    Google Scholar 

  • Lipton P., Hurtenbach C., and Kass I. R. (1985) Ca uptake during anoxia in the rat hippocampal slice. Sot. Neurosi. Abstr. 11(1), 394.

    Google Scholar 

  • Lund-Andersen H. (1974) Extracellular and intracellular distribution of inulin in rat brain cortex slices Brain Res. 65, 239–254.

    Article  PubMed  CAS  Google Scholar 

  • Lund-Andersen H. and Hertz L. (1970) Effect of potassium and of glutamate on swelling and on sodium and potassium content in brain cortex slices from adult rats. Exp. Brain Res. 11, 199–212

    Article  PubMed  CAS  Google Scholar 

  • Lund-Andersen H. and Moller M (1977) Uptake of inulin by cells in rat brain cortex. Exp Brain Res. 28, 37–50

    Article  PubMed  CAS  Google Scholar 

  • Marchbanks R. M. (1970) Ion Transport and Metabolism in Brain, in Membranes and ion Transport vol. 2 (Bittar E. E., ed.) Wiley-Interscience, London.

    Google Scholar 

  • McIlwain H and Rodnight R (1962) Practical Neurochemistry, Churchill, London.

    Google Scholar 

  • Moller M., Hertz L., Molgaard K., and Lund-Andersen H. (1974) Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex. Exp Brain Res. 22, 299–314.

    Google Scholar 

  • Pappius H. M. (1982) Water Spaces, in Handbook of Neurochemistry vol. 1 (Lajtha A., ed.) Plenum, New York.

    Google Scholar 

  • Pappius H. M., Klatzo I., and Elliott K. A. C. (1962) Further studies on swelling of brain slices. Can J. Biochem. Physiol. 40, 885–898.

    PubMed  CAS  Google Scholar 

  • Phelps C. F. (1965) The physical properties of inulin solutions Biochem. J 95, 41–47.

    PubMed  CAS  Google Scholar 

  • Pollay M., Stevens A., and Davis C. (1966) Determination of plasmathiocyanate binding and the Donnan ratio under simulated physiological conditions. Anal. Btochem. 17, 192–200.

    Article  CAS  Google Scholar 

  • Rubiales de Barioglio and Orrego F. (1982) A study of calcium compartments in rat brain cortex thin slices: Effects of veratridine, lithium and of a mitochondrial uncoupler. Neurochem. Res 11, 1427–1435.

    Google Scholar 

  • Schousboe A. and Hertz L. (1971) Effects of potassium on indicator spaces and fluxes in slices of brain cortex from adult and new-born rats. J. Neurochem. 18, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Selwood L. (1970) Electron microscopy of the fate of exogenous ferritin in the feline visual cortex. Z Zellforsch. 107, 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., and Wisgerhof M. (1967) Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. J. Neurochem. 14, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Varon S. and McIlwain H. (1961) Fluid content and compartments in isolated cerebral tissues. J Neurochem 8, 262–275.

    Article  PubMed  CAS  Google Scholar 

  • Walz W. and Hertz L. (1983) Comparison between fluxes of potassium and of chloride in astrocytes in primary cultures. Brain Res 277, 321–328.

    Article  PubMed  CAS  Google Scholar 

  • White W. F., NadlerJ. V., and Cotman C. W. (1978) A perfusion chamber for the study of CNS physiology and pharmacology in vitro. Brain Res. 152, 591–596.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Walz, W. (1988). Analysis of Ion Fluxes and Fluid Compartmentation in Brain Slices. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:421

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:421

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics