Skip to main content

The Choroid Plexus—Arachnoid Membrane—Cerebrospinal Fluid System

  • Protocol

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

The choroid plexus traditionally has been considered the major, but not sole, component of the blood-CSF barrier (BCFB). Most analyses of the BCFB have been directed to the choroid plexuses, rather than to the arachnoid, because of the predominant function of the former in CSF secretion and homeostasis, The physiological literature on the choroid plexus (CP) is much more extensive than on the arachnoid membrane; consequently this review emphasizes methodologies employed to evaluate choroidal function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Agnew W. F., Alvarez R. B., Yuen T G. H., Abramson S. B., and Kirk D. (1984) A serum-free culture system for studying solute exchanges in the choroid plexus. In Vitro 20, 712–722.

    PubMed  CAS  Google Scholar 

  • Alaranta H., Hurme M, Lahtela K., and Hyyppa M. T. (1983) Prolactin and cortisol in cerebrospinal fluld: Sex-related associations with clinical and psychological characteristics of patients with low back pain Psychoneuroendocrinology 8, 333–341.

    PubMed  CAS  Google Scholar 

  • Ames A., III, Higashl K., and Nesbett F B. (1965a) Relation of potassium concentration in choroid plexus fluid to that in plasma. J. Phystol. 181, 506–515.

    CAS  Google Scholar 

  • Ames A, III, Higashi K., and Nesbett F. B. (1965b) Effects of rCO2, acetazolamide and ouabain on volume and composition of choroldplexus fluid. J. Physiol. 181, 516–524.

    PubMed  Google Scholar 

  • Ames A., III, Sakanoue M., and Endo S. (1964) Na, K, Ca, Mg and Cl concentrations in chorold plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J. Neurophysiol 27, 672–681.

    PubMed  Google Scholar 

  • AzzamN. A., Choudhury S. R., and Donohue J. M (1978) Changes in the surface fine structure of chorold plexus eplthellum following chronic acetazolamide treatment. J. Anat 127, 333–342.

    Google Scholar 

  • Blount R., Foreman P., Harding M., and Segal M. (1973) The perfusion of the isolated chorold plexus of the sheep. J. Physiol. 232, 12-13P.

    Google Scholar 

  • Bouchaud C. and Bouvier D. (1978) Fine structure of tight Junctions between rat choroidal cells after osmotic opening induced by urea and sucrose. Tiss. Cell 10, 331–342.

    CAS  Google Scholar 

  • Bowsher D. (1958) A Possible Mechanism of Hydrocephus: The Osmotic Regulation of Cerebrospmal Fluid Volume, in Ciba Foundtion Sympossum on Cerebrospznal Flwd (Wolstenholme G. and O’wConnor C., eds.) Little, Brown, Boston.

    Google Scholar 

  • Bradbury M.W. B. (1975) Ontogeny of Mammalian Brain-Barrier Systems, in Fluzd Envzronment of the Brain (Cserr H. F., Fenstermacher J. D., and Fencl V., eds.) Academic, New York

    Google Scholar 

  • Bradbury M. (1979) Energy-Dependent Transport at the Barriers, in The Concept of a Blood-Bruin Barrier John Wiley, New York.

    Google Scholar 

  • Brown P. D., Loo D. D F., Sachs G, and Wright E. M. (1986) Calcium-activated K channels in amphibian choroid plexus. Fed Proc. 45, 740.

    Google Scholar 

  • Brzezinski J., Kjallquist A., and Siesjo B. K. (1967) Mean carbon dioxide tension in the brain after carbonic anhydrase inhibitionJ. Physiol. 188, 13–23.

    Google Scholar 

  • Burton S. (1982) Carrier-mediated transport of calcium into the invitro choroid plexus: Inhibitory effects of sodium, potassium and pharma-cologlcal agents. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • ChoudhuryS. R., Azzam N. A., and Donohue J. M. (1979) Changes in the surface fine structure of rat third ventricular ependyma following chronic acetazolamide treatment. J. Anat. 129, 51–62.

    Google Scholar 

  • Clark K. (1962) Isolation of the choroid plexus in viva. J. Neurosurg. 19, 1004–1006.

    PubMed  CAS  Google Scholar 

  • Crook R. B., Kasagami H., and Prusiner S. B. (1981) Culture and characterization of epithelial cells from bovine choroid plexus. J. Neurochern. 37, 845–854.

    CAS  Google Scholar 

  • Cserr H. (1971) Physiology of the choroid plexus. Physiol. Rev. 51, 273–311.

    PubMed  CAS  Google Scholar 

  • Cserr H. F, Bundgaard M., Ashby J. K., and Murray M. (1980) On the anatomic relation of choroid plexus to brain: A comparative study. Am. J. Phystol 238, R76–R81.

    CAS  Google Scholar 

  • Cserr H., Fenstermacher J. D., and Rall D. P. (1968) Permeabihties of the Chorold Plexus and Blood-Brain Barrier to Urea, in Excerpta Medica lnternational Congress series No. 195 Urea and the Kidney Elsevier, New York

    Google Scholar 

  • Czaky T. Z. and Rigor BM. (1967) The Choroid Plexus as a Glucose Barrier, in Progress in Brain Research. Brain Barrier Systems vol. 29 (Lajtha A. and Ford D. H, eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Decker J. F. and Quay W B. (1982) Stimulatory effects of melatonin on ependymal epithelium of choroid plexuses in golden hamsters. J. Neural Transm. 55, 53–67

    PubMed  CAS  Google Scholar 

  • DeLean A., Stadel J., and Lefkowitz R. J. (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled 8-adrenergic receptor. J. Biol. Chem. 255, 7108.

    CAS  Google Scholar 

  • Deng Q. S. (1986) Drug modification of chloride transport in the choroid plexus-cerebrospmal fluid system of the rat. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • Deng Q. S. and Johanson C. E. (1984) Effects of different temperatures, pH and pharmacological agents on chloride transport in rat choroid plexus. Fed. Proc. 43, 1088.

    Google Scholar 

  • Deng Q. S. and Johanson C. E. (1985) Stilbene and autonomic agents alter Cl penetration into the in vivo choroid plexus-CSF system. Fed. Proc. 44, 1746.

    Google Scholar 

  • Dermietzel R. (1975) Junctions in the central nervous system of the cat. V. The junctional complex of the pia-arachnoid membrane. Cell Tiss. Res. 164, 309–329.

    CAS  Google Scholar 

  • Edvinsson L., Lindvall M, Owman C., and West K. A. (1983) Autonomic Nervous Control of Cerebrospmal Fluid Production and Intracranial Pressure, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. H., ed.) Plenum, New York.

    Google Scholar 

  • Eisenberg H. M., Suddith R. L., and Crawford J S. (1980) Transport of Sodium and Potassium Across the Blood-Brain Barrier, in The Cerebral Microvasculature-Investigation of the Blood-Brain Barrier (Eisenberg H. and Suddith R., eds.) Plenum, New York.

    Google Scholar 

  • Feldman A. M., Epstein M. H., and Brusilow S W. (1980) Role of Cyclic AMP in Cerebrospinal Fluid Production, in Neurobiology of Cerebrospmal Fluid vol 1 (Wood J. H., ed.) Plenum, New York.

    Google Scholar 

  • Frank E. H., Burge B. W., Liwnicz B. H., Lotsperch L. J., and White J. C. (1983) Cytokeratin provides a specific marker for human arachnoid cells. Exp. Cell Res. 146, 371–376.

    PubMed  CAS  Google Scholar 

  • Freye E. and Gupta B. N. (1979) A modified technique for the selective perfusion of the fourth cerebral ventricle in conscious dogs. J. Pharmacol. Meth. 2, 305–314.

    Google Scholar 

  • Gabuzda D. H., Hunmcut E. J., Owen C. J., and Nathanson J. A. (1983) Choroid plexus epithelral cells in culture. Biochemical and pharmaco-logical characteristics. Soc. Neurosci. Abstr. 9, 118.

    Google Scholar 

  • Grady P. A. and Blaumams O. R. (1983) Structural evidence for unstirred layers in the choroid plexus epithelium. Soc. Neurosci Abstr. 9, 885.

    Google Scholar 

  • Hansen A. J. (1985) Effect of anoxia on ion distributron in the brain. Physiol. Rev. 65, 101–149.

    PubMed  CAS  Google Scholar 

  • Harbut R. E. (1982) Investigation of the primary stimulus and mechanism of the ammonium chloride-induced increase in the content of potassium in choroid plexus epithelial cells. Ph.D Thesis, University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • Harbut R. E. and Johanson C. E. (1986) Third ventricle choroid plexus function and its response to acute perturbations in plasma chemistry. Brain Res. 374, 137–146.

    PubMed  CAS  Google Scholar 

  • Hayward J. R. and Vogh B. P. (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fuid in the cat. J. Pharmacol. Exp. Ther. 208, 341–346.

    Google Scholar 

  • Hedlund L., Lischko M. M, Rollag M. D., and Niswender G. D. (1977) Melatonin dally cycle in plasma and cerebrospmal fluid of calves. Science 195, 686–687.

    PubMed  CAS  Google Scholar 

  • Heisey S. R. (1968) Brain and choroid plexus blood volumes in vertebrates. Comp. Biochem. Physiol. 26, 489–498.

    PubMed  CAS  Google Scholar 

  • Hervonen H., Spatz M., Bembry J., and Murray M. R. (1981) Studies related to the blood-brain barrier to monoamines and protein in pia-arachnold cultures. Brain Res. 210, 449–454.

    PubMed  CAS  Google Scholar 

  • Hise M. A. and Johanson C. E. (1979) The sink action of the cerebrospinal fluid in uremia. Eur. Neural. 18, 328–337.

    CAS  Google Scholar 

  • Howarth F. and Jowett A. (1962) A technique for surgical encapsulation of a canine chorold plexus. J. Physiol. 162, 20P.

    Google Scholar 

  • Husted R. F. and Reed D J. (1976) Regulation of cerebrospinal fluid potassium by the cat choroid plexus. J Physzol. 259, 213–221.

    CAS  Google Scholar 

  • Husted R. F. and Reed D. J. (1977) Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J. Physiol. 267, 411–428.

    PubMed  CAS  Google Scholar 

  • Johanson C. E. (1978) Choroid epithelial cell pH. Life Sci. 23, 861–868.

    PubMed  CAS  Google Scholar 

  • Johanson C. E. (1979) Effect of enzyme inhibitors on epithelial cell pH in choroid plexus and salivary gland. Pharmacologist 21, 242.

    Google Scholar 

  • Johanson C. E. (1980) Permeability and vascularity of the developing brain: Cerebellum vs cerebral cortex. Brain Res. 190, 3–16.

    PubMed  CAS  Google Scholar 

  • Johanson C. E. (1984) Differential effects of acetazolamide, benzolamide and systemic acidosis on hydrogen and bicarbonate gradients across the apical and basolateral membranes of the choroid plexus. J. Pharmacol. Exp. Ther. 231, 502–511.

    PubMed  CAS  Google Scholar 

  • Johanson C E. (1987a) Ontogeny and Phylogeny of the Blood-Brain Barrier, in The Clinical Impact of the Blood-Brain Barrier and Its Manipulation (Neuwelt E., ed.) Plenum, New York, in pre

    Google Scholar 

  • Johanson C. E. (1987b) Potential for Pharmacological Manipulation of the Blood-Cerebrospmal Fluid Barrier, in The Clinical Impact of the Blood-Brain Barrier and Its Manipulation (Neuwelt E., ed.) Plenum, New York, in press.

    Google Scholar 

  • Johanson C. E. and Harbut R E. (1984) Ionic homeostasis of the choroid plexus-csf system in ganglionectomized or adrenalectoilzed rats stressed with acidosis. Soc. Neurosci. Abstr. 10, 1162.

    Google Scholar 

  • Johanson C. E. and Smith Q R. (1984) Efflux of Cl-36 from chorold plexus by chloride-bicarbonate exchange. Physlologist 27, 272.

    Google Scholar 

  • Johanson C E. and Woodbury D. M. (1977) Penetration of C-14 barbital and C-14 antipyrine into the choroid plexus and cerebrospinal fluid of the rat. Exp Brain Res. 30, 65–74.

    PubMed  CAS  Google Scholar 

  • Johanson C. E. and Woodbury D. M. (1978) Uptake of C-14 urea by the in viva choroid plexus-cerebrospinal fluid-brain system: Identification of sites of molecular sieving. J.Physiol. 275, 167–176.

    PubMed  CAS  Google Scholar 

  • Johanson C. E., Parandoosh Z., and Smith Q. R. (1985) Chloride-bicarbonate exchange in the chorold plexus: Analysis by the DMO method for cell pH. Am. J. Physiol. 249, F470–F477.

    PubMed  Google Scholar 

  • Johanson C. E., Reed D.J., and Woodbury D. M. (1976) Developmental studies of the compartmentalization of water and electrolytes in the choroid plexus of neonatal rat brain. Brain Res 116, 35–48.

    PubMed  CAS  Google Scholar 

  • Johanson C. E., Allen J, and Withrow C. D. (1987) Regulation of brain and CSF pH in developing mammalian central nervous system. Dev. Brain Res., submitted.

    Google Scholar 

  • Johanson C. E., Foltz F. M., and Thompson A. M. (1974a) The clearance of urea and sucrose from isotonic and hypertonic fluids perfused through the ventnculo-cisternal system. Exp. Brain Res. 20, 18–31.

    PubMed  CAS  Google Scholar 

  • Johanson C. E., Reed D. J., and Woodbury D. M. (1974b) Active transport of sodium and potassium by the choroid plexus of the rat. J. Physiol. 241, 359–372.

    PubMed  CAS  Google Scholar 

  • Kimelberg H. K. (1981) Active and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta 646, 179–184.

    PubMed  CAS  Google Scholar 

  • Kozlowski G. P., Brownfield M. S., and Hostetter G. (1978) Neurosecretory Supply to Extrahypothalamic Structures: Chorold Plexus, Cir-cumventilcular Organs, and Limbic System, in Neuvosecretion and Neuroendocrrne Activity. Proceedrngs of VII lnternational Symposium Leningrad (Bargmann W. and Glessen O., eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Langenbeck U. and Kinne R. (1980) Enrichment and preliminary characterization of a plasma membrane fraction from hog choroid plexus. Hoppe Seyler’s Z. Physiol. Chem. 361, 1311.

    Google Scholar 

  • Levine S. and Sowinski R. (1973) Choroid plexitis produced in rats by cyclophosphamlde. J. Neuropathol. Exp. Neural. 32, 365–370.

    CAS  Google Scholar 

  • Liu-Chen L. Y., Han D. H., and Moskowitz M. A. (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9, 803–808.

    PubMed  CAS  Google Scholar 

  • Mann J. D. and Mann E. S. (1983) Differential Effects of Pentobarbital, Ketamine Hydrochloride, Enflurane and Halothane on Cerebrospinal Fluid Dynamics, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. W., ed.) Plenum, New York.

    Google Scholar 

  • Manuilov I. A. (1958) Technique for perfusion of brain ventricles in dogs under chronic experimental conditions. Sechenov Physiol J. USSR (Eng. transl.) 44, 458–462.

    Google Scholar 

  • Masuzawa T., Shimabukuro H, Sato F., and Saito T. (1981) Ultrastructural localization of carbonic anhydrase activity in the rat choroid plexus eplthehal cell. Histochennstry 73, 201–209.

    CAS  Google Scholar 

  • McComb J. G., Davson H., and Hollingsworth J. R. (1977) Attempted separation of blood-brain and blood-cerebrospinal fluid barriers in the rabbit. Exp. Eye Res. 25 (suppl.), 333–343.

    PubMed  Google Scholar 

  • Melby J. M., Miner L. C., and Reed D. J. (1982) Effect of acetazolamide and furosemide on the production and composition of cerebrospinal fluid from the cat choroid plexus. Can. J Physiol. Pharmacol. 60, 405–40

    PubMed  CAS  Google Scholar 

  • Mlchaels J. E. and Tornheim P. A. (1984) Arachnoid matter of the bullfrog, Rana catesbelana. A potential model for the study of intermediate filaments. Cell Tiss Res 236, 693–697.

    Google Scholar 

  • Milhorat T. H. (1969) Choroid plexus and cerebrospinal fluid production. Science 166, 1514–1516

    PubMed  CAS  Google Scholar 

  • Milhorat T. H., Hammock M. K., Fenstermacher J. D., Rall D. P., and Levin V. A. (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173, 330–332.

    PubMed  CAS  Google Scholar 

  • Miner L. C. and Reed D. J. (1972) Composition of fluid obtained from chorold plexus tissue isolated in a chamber in situ. J. Physiol. 227, 127–139.

    CAS  Google Scholar 

  • Murphy V A. (1984) Sodium-hydrogen exchange in the rat choroid plexus. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • Murphy V. A. and Johanson C. E. (1983) Amiloride and insulin alter choroid plexus (CP) sodium. Pharmacologist 25, 251.

    Google Scholar 

  • Murphy V. A. and Johanson C. E. (1985) Adrenergic-induced enhancement of brain barrier system permeability to small non-electrolytes: Choroid plexus vs. cerebral capillaries. J. Cereb. Blood Flow Metab. 5, 401–412.

    PubMed  CAS  Google Scholar 

  • Myers R. R. and Shapiro H. M. (1978) Paradoxical effect of enflurane on choroid plexus metabolism: Clinical implications. Proc. Ann. Meet. Am. Soc. Anesthesiol. 489–490.

    Google Scholar 

  • Nabeshima S., Reese T. S., Landis D. M. D., and Brightman M. W. (1975) Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–170.

    PubMed  CAS  Google Scholar 

  • Nakamura S. and Hochwald G. M. (1983) Effects of arterial pCO2 and cerebrospinal fluid volume flow rate changes on choroid plexus and cerebral blood flow in normal and experimental hydrocephalic cats. J. Cereb. Blood Flow Metab. 3, 369–375.

    PubMed  CAS  Google Scholar 

  • Nathanson J. A. (1979) B-Adrenergic-sensitive adenyl cyclase in secretory cells of choroid plexus. Science 204, 843–44.

    PubMed  CAS  Google Scholar 

  • Nathanson J. A. (1980) β-Adrenergic-sensitive adenylate cyclase in choroid plexus: Properties and cellular localization. Mol. Pharmacol. 18, 199–209.

    PubMed  CAS  Google Scholar 

  • Nathanson J. A. (1983) Adrenergic-Receptor Mechanisms in Mammalian Choroid Plexus, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. H., ed.) Plenum, New York

    Google Scholar 

  • O’Tuama L A., Remler M. P., and Nichols H. N. (1973) Accumulation of Radiolabelled Neutral Amino Acids by Canine Dura-Arachnoid Soc. Neurosci. Abstr., 3rd Ann. Meet. 374.

    Google Scholar 

  • Page R. B., Funsch D. J., Brennan R. W., and Hernandez M. J. (1980) Choroid plexus blood flow in the sheep. Brain Res. 197, 532–537.

    PubMed  CAS  Google Scholar 

  • Pappenheimer J. R., Heisey S. R., and Jordan E. F. (1961) Active transport of Diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood. Am. J. Physlol. 200, 1–10.

    CAS  Google Scholar 

  • Parandoosh Z. and Johanson C. E. (1979) Effect of vasopressin on the penetration of C-14 urea into brain compartments protected by barrier systems. Soc. Neurosci. Abstr. 5, 308.

    Google Scholar 

  • Parandoosh Z. and Johanson C. E. (1982) Ontogeny of the blood-brain barrier permeability to, and cerebrospinal fluid sink action on, C-14 urea. Am. J. Physiol. 243, R400–R407.

    PubMed  CAS  Google Scholar 

  • Patlak C. S., Adamson R. H., Oppelt W. W., and Rall D. P. (1966) Potential difference of the ventricular fluid in viva and in vitro in the dogfish. Life Sci. 5, 2011–2015.

    Google Scholar 

  • Pazos A., Hoyer D., and Palacios J. M. (1984) The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonm recognmon site. Eur J. Pharmacol. 106, 539–546.

    PubMed  CAS  Google Scholar 

  • Pellegrino L. J. and Cushman A. J. (1967) in A Stereotaxic Atlas of the Rat Brain Meredith, New York.

    Google Scholar 

  • Perez-Gomez J., Bindslev N., Orkand P. M., and Wright E. M. (1976) Electrical properties and structure of the frog arachnoid membrane. J Neurobiol. 7, 259–270.

    PubMed  CAS  Google Scholar 

  • Pershing L. K. and Johanson C. E. (1982) Acidosis-induced enhanced activity of the Na-K exchange pump in the in vivo choroid plexus: An ontogenetic analysis of possible role in cerebrospinal fluid pH homeostasis J. Neurochem 38, 322–332

    PubMed  CAS  Google Scholar 

  • Pollay M., Stevens A., Estrada E., and Kaplan R. (1972) Extracorporeal perfusion of choroid plexus. J Appl. Physiol 32, 612–617.

    PubMed  CAS  Google Scholar 

  • Pollay M., Stevens F. A., and Welch J. (1979) Choroid plexus blood flow in rat and rabbit Acta Neurol Stand. suppl. 7260, 596–597.

    Google Scholar 

  • Quay W. B. (1966) Regional differences in metabolism and composition of choroid plexuses Brain Res. 2, 378–389.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1976) The Blood-Brain Barrter tn Physiology and Medicine Raven, New York.

    Google Scholar 

  • Ross H J. and Wright E. M. (1984) Neutral amino acid transport by plasma membrane vesicles of the rabbit choroid plexus. Brain Res. 295, 155–160

    PubMed  CAS  Google Scholar 

  • Rougemont J., Ames A., Nesbett F. B., and Hofmann H. F. (1960) Fluid formed by choroid plexus. A technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J. Neurophysiol. 23, 485–495.

    PubMed  Google Scholar 

  • Rychter Z. and Stastny F. (1980) Stimulatory and Inhibitory Effect of Hydrocortisone on the Morphogenesis of the Choroid Plexus in Chick Embryo, in Ontogenesis of the Brain (Trojan S and Stastny F., eds.) University of Karlova, Praha, Czechoslovakia.

    Google Scholar 

  • Saito Y. and Wright E. M. (1982) Kinetics of the sodium pump in the frog choroid plexus. J. Physiol. 328, 229–243.

    PubMed  CAS  Google Scholar 

  • Santolaya R. C. and Echandia E. L. R. (1968) Induced changes in choroid plexus cells fine structure. Acta Physiol. Latino-Americana 18, 194–198.

    CAS  Google Scholar 

  • Schone H. and Loeschcke H. H. (1969) Bestandspotentiale am plexus choroideus des 4. ventrikels von katze und kaninchen in vitro. Pflugers Arch. 306, 195–209.

    PubMed  CAS  Google Scholar 

  • Schousboe A. (1972) Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Exp Brain Res 15, 521–531.

    PubMed  CAS  Google Scholar 

  • Smith Q. R. and Johanson C. E. (1980a) Effect of carbonic anhydrase inhibitors and acidosis on choroid plexus epithelial cell sodium and potassium. J. Pharmacol. Exp. Ther. 215, 673–680.

    PubMed  CAS  Google Scholar 

  • Smith Q. R. and Johanson C. E. (1980b) Effect of ouabain and potassium on ion concentrations in the choroidal epithelium. Am.J. Physiol. 238, F399–F406

    PubMed  CAS  Google Scholar 

  • Smith Q. R. and Johanson C. E. (1985) Active transport of chloride by lateral ventricle choroid plexus of the rat. Am. J. Physiol. 249, F470–F477.

    PubMed  CAS  Google Scholar 

  • Smith Q. R., Pershing L. K., and Johanson C. E. (1981a) A comparative analysis of extracellular fluid volume of several tissues as determined by six different markers. Life Sci. 29, 449–456.

    PubMed  Google Scholar 

  • Smith Q R., Woodbury D M., and Johanson C. E. (1981b) Uptake of Cl-36 and Na-22 by the choroid plexus-cerebrospinal fluid system: Evidence for active chloride transport by the choroidal epithelium. J. Neurochem. 37, 107–116.

    PubMed  CAS  Google Scholar 

  • Smith Q. R., Woodbury D. M, and Johanson C. E. (1982) Kinetic analysis of Cl-36, Na-22 and H-3 mannitol uptake into the in vivo choroid plexus-cerebrospinal fluid system: Ontogeny of the blood-brain and blood-CSF barriers. Dev. Brain Res. 3, 181–198.

    CAS  Google Scholar 

  • Spatz M., Renkawek K., Murray M. R., and Klatzo I. (1975) Uptake of radiolabeled glucose analogues by organotypic pia arachnoid cultures. Brain Res. 100, 710–715.

    PubMed  CAS  Google Scholar 

  • Spector R. (1982) Nucleoside transport in choroid plexus: Mechanism and specificity. Arch. Biochem Biophys. 216, 693–703.

    PubMed  CAS  Google Scholar 

  • Spector R. and Eells J. (1984) Deoxynucleoside and vitamin transport into the central nervous system. Fed. Proc. 43, 196–200.

    PubMed  CAS  Google Scholar 

  • Spector R. and Johanson C. E (1987) Choroid plexus: Structure, development and function Sci. Am., in press.

    Google Scholar 

  • Spector R. and Levy P. (1975) Thyroxine transport by the choroid plexus in vitro. Brain Res. 98, 400–404.

    PubMed  CAS  Google Scholar 

  • Spector R. and Lorenzo A. V. (1974) Specificity of ascorbic acid transport system of the central nervous system. Am. J. Physiol. 226, 1468–147

    PubMed  CAS  Google Scholar 

  • Stevens B. R., Ross H. J., and Wright E. M. (1982) Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Mem. Biol. 66, 213–225.

    CAS  Google Scholar 

  • Stonestreet B. S., Nowicki P. T., Hansen N. B., Petit R., and Oh W. (1983) Effect of aminophylline on brain blood flow in the newborn piglet. Dev. Pharmacol. Ther. 6, 248–258.

    PubMed  CAS  Google Scholar 

  • Tennyson V. M. and Pappas G. D. (1968) The fine structure of the choroid plexus: Adult and developmental stages. Prog. Brain Res. 29, 63–85.

    PubMed  CAS  Google Scholar 

  • Thompson A. M. (1970) Hyperosmotic Effects on Brain Uptake of Non-electrolytes, in Capillary Permeability (Crone C. and Lassen N. A., eds.) Munksgaard, Copenhag

    Google Scholar 

  • Tyson G., Kelly P., McCulloch J., and Teasdale G. (1982) Auto-radiographic assessment of choroid plexus blood flow and glucose utilization in the unanesthetized rat. J. Neurosurg. 57, 543–547.

    PubMed  CAS  Google Scholar 

  • V’allfors B., Hansson H. A., and Belghmaidi M. (1983a) Mesothehal cell integrity of the subdural and arachnoid surfaces of the cat brain after exposure to neurosurgical irrigation fluids and air. A scanning electron microscopic study Neurosurgery 12, 35–39.

    PubMed  CAS  Google Scholar 

  • V’allfors B., Hansson H. A., Belghmaidi M., and Persson L. I. (1983b) Effect of radiologic contrast media and local anaesthetics on the blood-brain barrier and on the leptomeninges. Acta Neural. Scand 68, 164–170.

    CAS  Google Scholar 

  • Walsh R. J., Posner B. I., and Patel B. (1984) Binding and uptake of [125]iodoprolactin by epithelial cells of the rat choroid plexus. An in vivo autoradiographic analysis. Endocrinology 114, 1496–1505.

    PubMed  CAS  Google Scholar 

  • Welch K. (1962) Active transport of iodide by choroid plexus of the rabbit In vivo Am J. Physiol. 202, 757–760.

    CAS  Google Scholar 

  • Welch K. (1963) Secretion of cerebrospmal flurd by choroid plexus of the rabbit. Am. J. Physiol. 205, 617–624.

    PubMed  CAS  Google Scholar 

  • Welch K. and Sadler K. (1965) Electrical potentials of the choroid plexus of the rabbit J. Neurosurg 22, 344–351.

    PubMed  CAS  Google Scholar 

  • Welch K., Araki H., and Arkins T. (1972) Electrlcal potentials of the lamina epithelialis chorozdea of the fourth ventricle of the cat in vitro: Relationship to the CSF blood potential. Dev. Med Child Neurol. 14,(suppl. 27), 146–151.

    Google Scholar 

  • Wenk E. J., Levine S., and Hoenig E M. (1979) Fine structure of contrasting choroid plexus lesions caused by tertiary amines or cyclophosphamide. J. Neuropathol. Exp. Neurol. 38, 1–9

    PubMed  CAS  Google Scholar 

  • Woodbury D. M., Johanson C. E., and Brondsted H. (1974) Maturation of the Blood-Brain and Blood-CSF Barriers and Transport Systems, in Narcotics and the Hypothalamus (Zimmermann E. and George R., eds.) Raven, New York.

    Google Scholar 

  • Wright E. M. (1972) Mechanisms of ion transport across the choroid plexus. J. Physiol 226, 545–571.

    PubMed  CAS  Google Scholar 

  • Wright E. M. (1974) Active transport of glycine across the frog arachnoid membrane. Brain Res. 76, 354–358.

    PubMed  CAS  Google Scholar 

  • Wright E. M. (1978) Transport processes in the formation of the cere-brospinal fluid. Rev. Physiol. Biochem. Pharmacol 83, 1–34.

    CAS  Google Scholar 

  • Wright E. M. (1984) Electrophysiology of plasma membrane vesicles. Am. J Physlol 246, F363–F372.

    CAS  Google Scholar 

  • Wright P. M., Noguelra G. J., and Levin E. (1971) Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid. Exp. Brain Res. 13, 294–305.

    Google Scholar 

  • Wright S. H., Kippen I., Klmenberg J. R., and Wright E. M. (1980) Specificity of the transport system for tricarboxylic acid cycle in-termediates in renal brush borders. J Membrane Biol 57, 73–82.

    CAS  Google Scholar 

  • Yagaloff K. A. and Hartig P. R. (1985) 1251-Lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells J. Neurosci., 5(12), 3178–3183

    PubMed  CAS  Google Scholar 

  • Yuen T. G. H. and Agnew W. F. (1978) Ultrastructural alterations during choroid plexus incubatrons. Exp.Neurol. 60, 96–115.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Johanson, C.E. (1988). The Choroid Plexus—Arachnoid Membrane—Cerebrospinal Fluid System. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:33

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics