The Choroid Plexus—Arachnoid Membrane—Cerebrospinal Fluid System

  • Conrad E. Johanson
Part of the Neuromethods book series (NM, volume 9)


The choroid plexus traditionally has been considered the major, but not sole, component of the blood-CSF barrier (BCFB). Most analyses of the BCFB have been directed to the choroid plexuses, rather than to the arachnoid, because of the predominant function of the former in CSF secretion and homeostasis, The physiological literature on the choroid plexus (CP) is much more extensive than on the arachnoid membrane; consequently this review emphasizes methodologies employed to evaluate choroidal function.


Choroid Plexus Fourth Ventricle Arachnoid Membrane Choroid Plexus Epithelium Choroid Plexus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnew W. F., Alvarez R. B., Yuen T G. H., Abramson S. B., and Kirk D. (1984) A serum-free culture system for studying solute exchanges in the choroid plexus. In Vitro 20, 712–722.PubMedGoogle Scholar
  2. Alaranta H., Hurme M, Lahtela K., and Hyyppa M. T. (1983) Prolactin and cortisol in cerebrospinal fluld: Sex-related associations with clinical and psychological characteristics of patients with low back pain Psychoneuroendocrinology 8, 333–341.PubMedGoogle Scholar
  3. Ames A., III, Higashl K., and Nesbett F B. (1965a) Relation of potassium concentration in choroid plexus fluid to that in plasma. J. Phystol. 181, 506–515.Google Scholar
  4. Ames A, III, Higashi K., and Nesbett F. B. (1965b) Effects of rCO2, acetazolamide and ouabain on volume and composition of choroldplexus fluid. J. Physiol. 181, 516–524.PubMedGoogle Scholar
  5. Ames A., III, Sakanoue M., and Endo S. (1964) Na, K, Ca, Mg and Cl concentrations in chorold plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J. Neurophysiol 27, 672–681.PubMedGoogle Scholar
  6. AzzamN. A., Choudhury S. R., and Donohue J. M (1978) Changes in the surface fine structure of chorold plexus eplthellum following chronic acetazolamide treatment. J. Anat 127, 333–342.Google Scholar
  7. Blount R., Foreman P., Harding M., and Segal M. (1973) The perfusion of the isolated chorold plexus of the sheep. J. Physiol. 232, 12-13P.Google Scholar
  8. Bouchaud C. and Bouvier D. (1978) Fine structure of tight Junctions between rat choroidal cells after osmotic opening induced by urea and sucrose. Tiss. Cell 10, 331–342.Google Scholar
  9. Bowsher D. (1958) A Possible Mechanism of Hydrocephus: The Osmotic Regulation of Cerebrospmal Fluid Volume, in Ciba Foundtion Sympossum on Cerebrospznal Flwd (Wolstenholme G. and O’wConnor C., eds.) Little, Brown, Boston.Google Scholar
  10. Bradbury M.W. B. (1975) Ontogeny of Mammalian Brain-Barrier Systems, in Fluzd Envzronment of the Brain (Cserr H. F., Fenstermacher J. D., and Fencl V., eds.) Academic, New YorkGoogle Scholar
  11. Bradbury M. (1979) Energy-Dependent Transport at the Barriers, in The Concept of a Blood-Bruin Barrier John Wiley, New York.Google Scholar
  12. Brown P. D., Loo D. D F., Sachs G, and Wright E. M. (1986) Calcium-activated K channels in amphibian choroid plexus. Fed Proc. 45, 740.Google Scholar
  13. Brzezinski J., Kjallquist A., and Siesjo B. K. (1967) Mean carbon dioxide tension in the brain after carbonic anhydrase inhibitionJ. Physiol. 188, 13–23.Google Scholar
  14. Burton S. (1982) Carrier-mediated transport of calcium into the invitro choroid plexus: Inhibitory effects of sodium, potassium and pharma-cologlcal agents. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.Google Scholar
  15. ChoudhuryS. R., Azzam N. A., and Donohue J. M. (1979) Changes in the surface fine structure of rat third ventricular ependyma following chronic acetazolamide treatment. J. Anat. 129, 51–62.Google Scholar
  16. Clark K. (1962) Isolation of the choroid plexus in viva. J. Neurosurg. 19, 1004–1006.PubMedGoogle Scholar
  17. Crook R. B., Kasagami H., and Prusiner S. B. (1981) Culture and characterization of epithelial cells from bovine choroid plexus. J. Neurochern. 37, 845–854.Google Scholar
  18. Cserr H. (1971) Physiology of the choroid plexus. Physiol. Rev. 51, 273–311.PubMedGoogle Scholar
  19. Cserr H. F, Bundgaard M., Ashby J. K., and Murray M. (1980) On the anatomic relation of choroid plexus to brain: A comparative study. Am. J. Phystol 238, R76–R81.Google Scholar
  20. Cserr H., Fenstermacher J. D., and Rall D. P. (1968) Permeabihties of the Chorold Plexus and Blood-Brain Barrier to Urea, in Excerpta Medica lnternational Congress series No. 195 Urea and the Kidney Elsevier, New YorkGoogle Scholar
  21. Czaky T. Z. and Rigor BM. (1967) The Choroid Plexus as a Glucose Barrier, in Progress in Brain Research. Brain Barrier Systems vol. 29 (Lajtha A. and Ford D. H, eds.) Elsevier, Amsterdam.Google Scholar
  22. Decker J. F. and Quay W B. (1982) Stimulatory effects of melatonin on ependymal epithelium of choroid plexuses in golden hamsters. J. Neural Transm. 55, 53–67PubMedGoogle Scholar
  23. DeLean A., Stadel J., and Lefkowitz R. J. (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled 8-adrenergic receptor. J. Biol. Chem. 255, 7108.Google Scholar
  24. Deng Q. S. (1986) Drug modification of chloride transport in the choroid plexus-cerebrospmal fluid system of the rat. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.Google Scholar
  25. Deng Q. S. and Johanson C. E. (1984) Effects of different temperatures, pH and pharmacological agents on chloride transport in rat choroid plexus. Fed. Proc. 43, 1088.Google Scholar
  26. Deng Q. S. and Johanson C. E. (1985) Stilbene and autonomic agents alter Cl penetration into the in vivo choroid plexus-CSF system. Fed. Proc. 44, 1746.Google Scholar
  27. Dermietzel R. (1975) Junctions in the central nervous system of the cat. V. The junctional complex of the pia-arachnoid membrane. Cell Tiss. Res. 164, 309–329.Google Scholar
  28. Edvinsson L., Lindvall M, Owman C., and West K. A. (1983) Autonomic Nervous Control of Cerebrospmal Fluid Production and Intracranial Pressure, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. H., ed.) Plenum, New York.Google Scholar
  29. Eisenberg H. M., Suddith R. L., and Crawford J S. (1980) Transport of Sodium and Potassium Across the Blood-Brain Barrier, in The Cerebral Microvasculature-Investigation of the Blood-Brain Barrier (Eisenberg H. and Suddith R., eds.) Plenum, New York.Google Scholar
  30. Feldman A. M., Epstein M. H., and Brusilow S W. (1980) Role of Cyclic AMP in Cerebrospinal Fluid Production, in Neurobiology of Cerebrospmal Fluid vol 1 (Wood J. H., ed.) Plenum, New York.Google Scholar
  31. Frank E. H., Burge B. W., Liwnicz B. H., Lotsperch L. J., and White J. C. (1983) Cytokeratin provides a specific marker for human arachnoid cells. Exp. Cell Res. 146, 371–376.PubMedGoogle Scholar
  32. Freye E. and Gupta B. N. (1979) A modified technique for the selective perfusion of the fourth cerebral ventricle in conscious dogs. J. Pharmacol. Meth. 2, 305–314.Google Scholar
  33. Gabuzda D. H., Hunmcut E. J., Owen C. J., and Nathanson J. A. (1983) Choroid plexus epithelral cells in culture. Biochemical and pharmaco-logical characteristics. Soc. Neurosci. Abstr. 9, 118.Google Scholar
  34. Grady P. A. and Blaumams O. R. (1983) Structural evidence for unstirred layers in the choroid plexus epithelium. Soc. Neurosci Abstr. 9, 885.Google Scholar
  35. Hansen A. J. (1985) Effect of anoxia on ion distributron in the brain. Physiol. Rev. 65, 101–149.PubMedGoogle Scholar
  36. Harbut R. E. (1982) Investigation of the primary stimulus and mechanism of the ammonium chloride-induced increase in the content of potassium in choroid plexus epithelial cells. Ph.D Thesis, University of Utah, Salt Lake City, Utah.Google Scholar
  37. Harbut R. E. and Johanson C. E. (1986) Third ventricle choroid plexus function and its response to acute perturbations in plasma chemistry. Brain Res. 374, 137–146.PubMedGoogle Scholar
  38. Hayward J. R. and Vogh B. P. (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fuid in the cat. J. Pharmacol. Exp. Ther. 208, 341–346.Google Scholar
  39. Hedlund L., Lischko M. M, Rollag M. D., and Niswender G. D. (1977) Melatonin dally cycle in plasma and cerebrospmal fluid of calves. Science 195, 686–687.PubMedGoogle Scholar
  40. Heisey S. R. (1968) Brain and choroid plexus blood volumes in vertebrates. Comp. Biochem. Physiol. 26, 489–498.PubMedGoogle Scholar
  41. Hervonen H., Spatz M., Bembry J., and Murray M. R. (1981) Studies related to the blood-brain barrier to monoamines and protein in pia-arachnold cultures. Brain Res. 210, 449–454.PubMedGoogle Scholar
  42. Hise M. A. and Johanson C. E. (1979) The sink action of the cerebrospinal fluid in uremia. Eur. Neural. 18, 328–337.Google Scholar
  43. Howarth F. and Jowett A. (1962) A technique for surgical encapsulation of a canine chorold plexus. J. Physiol. 162, 20P.Google Scholar
  44. Husted R. F. and Reed D J. (1976) Regulation of cerebrospinal fluid potassium by the cat choroid plexus. J Physzol. 259, 213–221.Google Scholar
  45. Husted R. F. and Reed D. J. (1977) Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J. Physiol. 267, 411–428.PubMedGoogle Scholar
  46. Johanson C. E. (1978) Choroid epithelial cell pH. Life Sci. 23, 861–868.PubMedGoogle Scholar
  47. Johanson C. E. (1979) Effect of enzyme inhibitors on epithelial cell pH in choroid plexus and salivary gland. Pharmacologist 21, 242.Google Scholar
  48. Johanson C. E. (1980) Permeability and vascularity of the developing brain: Cerebellum vs cerebral cortex. Brain Res. 190, 3–16.PubMedGoogle Scholar
  49. Johanson C. E. (1984) Differential effects of acetazolamide, benzolamide and systemic acidosis on hydrogen and bicarbonate gradients across the apical and basolateral membranes of the choroid plexus. J. Pharmacol. Exp. Ther. 231, 502–511.PubMedGoogle Scholar
  50. Johanson C E. (1987a) Ontogeny and Phylogeny of the Blood-Brain Barrier, in The Clinical Impact of the Blood-Brain Barrier and Its Manipulation (Neuwelt E., ed.) Plenum, New York, in preGoogle Scholar
  51. Johanson C. E. (1987b) Potential for Pharmacological Manipulation of the Blood-Cerebrospmal Fluid Barrier, in The Clinical Impact of the Blood-Brain Barrier and Its Manipulation (Neuwelt E., ed.) Plenum, New York, in press.Google Scholar
  52. Johanson C. E. and Harbut R E. (1984) Ionic homeostasis of the choroid plexus-csf system in ganglionectomized or adrenalectoilzed rats stressed with acidosis. Soc. Neurosci. Abstr. 10, 1162.Google Scholar
  53. Johanson C. E. and Smith Q R. (1984) Efflux of Cl-36 from chorold plexus by chloride-bicarbonate exchange. Physlologist 27, 272.Google Scholar
  54. Johanson C E. and Woodbury D. M. (1977) Penetration of C-14 barbital and C-14 antipyrine into the choroid plexus and cerebrospinal fluid of the rat. Exp Brain Res. 30, 65–74.PubMedGoogle Scholar
  55. Johanson C. E. and Woodbury D. M. (1978) Uptake of C-14 urea by the in viva choroid plexus-cerebrospinal fluid-brain system: Identification of sites of molecular sieving. J.Physiol. 275, 167–176.PubMedGoogle Scholar
  56. Johanson C. E., Parandoosh Z., and Smith Q. R. (1985) Chloride-bicarbonate exchange in the chorold plexus: Analysis by the DMO method for cell pH. Am. J. Physiol. 249, F470–F477.PubMedGoogle Scholar
  57. Johanson C. E., Reed D.J., and Woodbury D. M. (1976) Developmental studies of the compartmentalization of water and electrolytes in the choroid plexus of neonatal rat brain. Brain Res 116, 35–48.PubMedGoogle Scholar
  58. Johanson C. E., Allen J, and Withrow C. D. (1987) Regulation of brain and CSF pH in developing mammalian central nervous system. Dev. Brain Res., submitted.Google Scholar
  59. Johanson C. E., Foltz F. M., and Thompson A. M. (1974a) The clearance of urea and sucrose from isotonic and hypertonic fluids perfused through the ventnculo-cisternal system. Exp. Brain Res. 20, 18–31.PubMedGoogle Scholar
  60. Johanson C. E., Reed D. J., and Woodbury D. M. (1974b) Active transport of sodium and potassium by the choroid plexus of the rat. J. Physiol. 241, 359–372.PubMedGoogle Scholar
  61. Kimelberg H. K. (1981) Active and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta 646, 179–184.PubMedGoogle Scholar
  62. Kozlowski G. P., Brownfield M. S., and Hostetter G. (1978) Neurosecretory Supply to Extrahypothalamic Structures: Chorold Plexus, Cir-cumventilcular Organs, and Limbic System, in Neuvosecretion and Neuroendocrrne Activity. Proceedrngs of VII lnternational Symposium Leningrad (Bargmann W. and Glessen O., eds.) Springer-Verlag, Berlin.Google Scholar
  63. Langenbeck U. and Kinne R. (1980) Enrichment and preliminary characterization of a plasma membrane fraction from hog choroid plexus. Hoppe Seyler’s Z. Physiol. Chem. 361, 1311.Google Scholar
  64. Levine S. and Sowinski R. (1973) Choroid plexitis produced in rats by cyclophosphamlde. J. Neuropathol. Exp. Neural. 32, 365–370.Google Scholar
  65. Liu-Chen L. Y., Han D. H., and Moskowitz M. A. (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9, 803–808.PubMedGoogle Scholar
  66. Mann J. D. and Mann E. S. (1983) Differential Effects of Pentobarbital, Ketamine Hydrochloride, Enflurane and Halothane on Cerebrospinal Fluid Dynamics, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. W., ed.) Plenum, New York.Google Scholar
  67. Manuilov I. A. (1958) Technique for perfusion of brain ventricles in dogs under chronic experimental conditions. Sechenov Physiol J. USSR (Eng. transl.) 44, 458–462.Google Scholar
  68. Masuzawa T., Shimabukuro H, Sato F., and Saito T. (1981) Ultrastructural localization of carbonic anhydrase activity in the rat choroid plexus eplthehal cell. Histochennstry 73, 201–209.Google Scholar
  69. McComb J. G., Davson H., and Hollingsworth J. R. (1977) Attempted separation of blood-brain and blood-cerebrospinal fluid barriers in the rabbit. Exp. Eye Res. 25 (suppl.), 333–343.PubMedGoogle Scholar
  70. Melby J. M., Miner L. C., and Reed D. J. (1982) Effect of acetazolamide and furosemide on the production and composition of cerebrospinal fluid from the cat choroid plexus. Can. J Physiol. Pharmacol. 60, 405–40PubMedGoogle Scholar
  71. Mlchaels J. E. and Tornheim P. A. (1984) Arachnoid matter of the bullfrog, Rana catesbelana. A potential model for the study of intermediate filaments. Cell Tiss Res 236, 693–697.Google Scholar
  72. Milhorat T. H. (1969) Choroid plexus and cerebrospinal fluid production. Science 166, 1514–1516PubMedGoogle Scholar
  73. Milhorat T. H., Hammock M. K., Fenstermacher J. D., Rall D. P., and Levin V. A. (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173, 330–332.PubMedGoogle Scholar
  74. Miner L. C. and Reed D. J. (1972) Composition of fluid obtained from chorold plexus tissue isolated in a chamber in situ. J. Physiol. 227, 127–139.Google Scholar
  75. Murphy V A. (1984) Sodium-hydrogen exchange in the rat choroid plexus. Ph.D. Thesis, University of Utah, Salt Lake City, Utah.Google Scholar
  76. Murphy V. A. and Johanson C. E. (1983) Amiloride and insulin alter choroid plexus (CP) sodium. Pharmacologist 25, 251.Google Scholar
  77. Murphy V. A. and Johanson C. E. (1985) Adrenergic-induced enhancement of brain barrier system permeability to small non-electrolytes: Choroid plexus vs. cerebral capillaries. J. Cereb. Blood Flow Metab. 5, 401–412.PubMedGoogle Scholar
  78. Myers R. R. and Shapiro H. M. (1978) Paradoxical effect of enflurane on choroid plexus metabolism: Clinical implications. Proc. Ann. Meet. Am. Soc. Anesthesiol. 489–490.Google Scholar
  79. Nabeshima S., Reese T. S., Landis D. M. D., and Brightman M. W. (1975) Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–170.PubMedGoogle Scholar
  80. Nakamura S. and Hochwald G. M. (1983) Effects of arterial pCO2 and cerebrospinal fluid volume flow rate changes on choroid plexus and cerebral blood flow in normal and experimental hydrocephalic cats. J. Cereb. Blood Flow Metab. 3, 369–375.PubMedGoogle Scholar
  81. Nathanson J. A. (1979) B-Adrenergic-sensitive adenyl cyclase in secretory cells of choroid plexus. Science 204, 843–44.PubMedGoogle Scholar
  82. Nathanson J. A. (1980) β-Adrenergic-sensitive adenylate cyclase in choroid plexus: Properties and cellular localization. Mol. Pharmacol. 18, 199–209.PubMedGoogle Scholar
  83. Nathanson J. A. (1983) Adrenergic-Receptor Mechanisms in Mammalian Choroid Plexus, in Neurobiology of Cerebrospinal Fluid vol. 2 (Wood J. H., ed.) Plenum, New YorkGoogle Scholar
  84. O’Tuama L A., Remler M. P., and Nichols H. N. (1973) Accumulation of Radiolabelled Neutral Amino Acids by Canine Dura-Arachnoid Soc. Neurosci. Abstr., 3rd Ann. Meet. 374.Google Scholar
  85. Page R. B., Funsch D. J., Brennan R. W., and Hernandez M. J. (1980) Choroid plexus blood flow in the sheep. Brain Res. 197, 532–537.PubMedGoogle Scholar
  86. Pappenheimer J. R., Heisey S. R., and Jordan E. F. (1961) Active transport of Diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood. Am. J. Physlol. 200, 1–10.Google Scholar
  87. Parandoosh Z. and Johanson C. E. (1979) Effect of vasopressin on the penetration of C-14 urea into brain compartments protected by barrier systems. Soc. Neurosci. Abstr. 5, 308.Google Scholar
  88. Parandoosh Z. and Johanson C. E. (1982) Ontogeny of the blood-brain barrier permeability to, and cerebrospinal fluid sink action on, C-14 urea. Am. J. Physiol. 243, R400–R407.PubMedGoogle Scholar
  89. Patlak C. S., Adamson R. H., Oppelt W. W., and Rall D. P. (1966) Potential difference of the ventricular fluid in viva and in vitro in the dogfish. Life Sci. 5, 2011–2015.Google Scholar
  90. Pazos A., Hoyer D., and Palacios J. M. (1984) The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonm recognmon site. Eur J. Pharmacol. 106, 539–546.PubMedGoogle Scholar
  91. Pellegrino L. J. and Cushman A. J. (1967) in A Stereotaxic Atlas of the Rat Brain Meredith, New York.Google Scholar
  92. Perez-Gomez J., Bindslev N., Orkand P. M., and Wright E. M. (1976) Electrical properties and structure of the frog arachnoid membrane. J Neurobiol. 7, 259–270.PubMedGoogle Scholar
  93. Pershing L. K. and Johanson C. E. (1982) Acidosis-induced enhanced activity of the Na-K exchange pump in the in vivo choroid plexus: An ontogenetic analysis of possible role in cerebrospinal fluid pH homeostasis J. Neurochem 38, 322–332PubMedGoogle Scholar
  94. Pollay M., Stevens A., Estrada E., and Kaplan R. (1972) Extracorporeal perfusion of choroid plexus. J Appl. Physiol 32, 612–617.PubMedGoogle Scholar
  95. Pollay M., Stevens F. A., and Welch J. (1979) Choroid plexus blood flow in rat and rabbit Acta Neurol Stand. suppl. 7260, 596–597.Google Scholar
  96. Quay W. B. (1966) Regional differences in metabolism and composition of choroid plexuses Brain Res. 2, 378–389.PubMedGoogle Scholar
  97. Rapoport S. I. (1976) The Blood-Brain Barrter tn Physiology and Medicine Raven, New York.Google Scholar
  98. Ross H J. and Wright E. M. (1984) Neutral amino acid transport by plasma membrane vesicles of the rabbit choroid plexus. Brain Res. 295, 155–160PubMedGoogle Scholar
  99. Rougemont J., Ames A., Nesbett F. B., and Hofmann H. F. (1960) Fluid formed by choroid plexus. A technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J. Neurophysiol. 23, 485–495.PubMedGoogle Scholar
  100. Rychter Z. and Stastny F. (1980) Stimulatory and Inhibitory Effect of Hydrocortisone on the Morphogenesis of the Choroid Plexus in Chick Embryo, in Ontogenesis of the Brain (Trojan S and Stastny F., eds.) University of Karlova, Praha, Czechoslovakia.Google Scholar
  101. Saito Y. and Wright E. M. (1982) Kinetics of the sodium pump in the frog choroid plexus. J. Physiol. 328, 229–243.PubMedGoogle Scholar
  102. Santolaya R. C. and Echandia E. L. R. (1968) Induced changes in choroid plexus cells fine structure. Acta Physiol. Latino-Americana 18, 194–198.Google Scholar
  103. Schone H. and Loeschcke H. H. (1969) Bestandspotentiale am plexus choroideus des 4. ventrikels von katze und kaninchen in vitro. Pflugers Arch. 306, 195–209.PubMedGoogle Scholar
  104. Schousboe A. (1972) Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Exp Brain Res 15, 521–531.PubMedGoogle Scholar
  105. Smith Q. R. and Johanson C. E. (1980a) Effect of carbonic anhydrase inhibitors and acidosis on choroid plexus epithelial cell sodium and potassium. J. Pharmacol. Exp. Ther. 215, 673–680.PubMedGoogle Scholar
  106. Smith Q. R. and Johanson C. E. (1980b) Effect of ouabain and potassium on ion concentrations in the choroidal epithelium. Am.J. Physiol. 238, F399–F406PubMedGoogle Scholar
  107. Smith Q. R. and Johanson C. E. (1985) Active transport of chloride by lateral ventricle choroid plexus of the rat. Am. J. Physiol. 249, F470–F477.PubMedGoogle Scholar
  108. Smith Q. R., Pershing L. K., and Johanson C. E. (1981a) A comparative analysis of extracellular fluid volume of several tissues as determined by six different markers. Life Sci. 29, 449–456.PubMedGoogle Scholar
  109. Smith Q R., Woodbury D M., and Johanson C. E. (1981b) Uptake of Cl-36 and Na-22 by the choroid plexus-cerebrospinal fluid system: Evidence for active chloride transport by the choroidal epithelium. J. Neurochem. 37, 107–116.PubMedGoogle Scholar
  110. Smith Q. R., Woodbury D. M, and Johanson C. E. (1982) Kinetic analysis of Cl-36, Na-22 and H-3 mannitol uptake into the in vivo choroid plexus-cerebrospinal fluid system: Ontogeny of the blood-brain and blood-CSF barriers. Dev. Brain Res. 3, 181–198.Google Scholar
  111. Spatz M., Renkawek K., Murray M. R., and Klatzo I. (1975) Uptake of radiolabeled glucose analogues by organotypic pia arachnoid cultures. Brain Res. 100, 710–715.PubMedGoogle Scholar
  112. Spector R. (1982) Nucleoside transport in choroid plexus: Mechanism and specificity. Arch. Biochem Biophys. 216, 693–703.PubMedGoogle Scholar
  113. Spector R. and Eells J. (1984) Deoxynucleoside and vitamin transport into the central nervous system. Fed. Proc. 43, 196–200.PubMedGoogle Scholar
  114. Spector R. and Johanson C. E (1987) Choroid plexus: Structure, development and function Sci. Am., in press.Google Scholar
  115. Spector R. and Levy P. (1975) Thyroxine transport by the choroid plexus in vitro. Brain Res. 98, 400–404.PubMedGoogle Scholar
  116. Spector R. and Lorenzo A. V. (1974) Specificity of ascorbic acid transport system of the central nervous system. Am. J. Physiol. 226, 1468–147PubMedGoogle Scholar
  117. Stevens B. R., Ross H. J., and Wright E. M. (1982) Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Mem. Biol. 66, 213–225.Google Scholar
  118. Stonestreet B. S., Nowicki P. T., Hansen N. B., Petit R., and Oh W. (1983) Effect of aminophylline on brain blood flow in the newborn piglet. Dev. Pharmacol. Ther. 6, 248–258.PubMedGoogle Scholar
  119. Tennyson V. M. and Pappas G. D. (1968) The fine structure of the choroid plexus: Adult and developmental stages. Prog. Brain Res. 29, 63–85.PubMedGoogle Scholar
  120. Thompson A. M. (1970) Hyperosmotic Effects on Brain Uptake of Non-electrolytes, in Capillary Permeability (Crone C. and Lassen N. A., eds.) Munksgaard, CopenhagGoogle Scholar
  121. Tyson G., Kelly P., McCulloch J., and Teasdale G. (1982) Auto-radiographic assessment of choroid plexus blood flow and glucose utilization in the unanesthetized rat. J. Neurosurg. 57, 543–547.PubMedGoogle Scholar
  122. V’allfors B., Hansson H. A., and Belghmaidi M. (1983a) Mesothehal cell integrity of the subdural and arachnoid surfaces of the cat brain after exposure to neurosurgical irrigation fluids and air. A scanning electron microscopic study Neurosurgery 12, 35–39.PubMedGoogle Scholar
  123. V’allfors B., Hansson H. A., Belghmaidi M., and Persson L. I. (1983b) Effect of radiologic contrast media and local anaesthetics on the blood-brain barrier and on the leptomeninges. Acta Neural. Scand 68, 164–170.Google Scholar
  124. Walsh R. J., Posner B. I., and Patel B. (1984) Binding and uptake of [125]iodoprolactin by epithelial cells of the rat choroid plexus. An in vivo autoradiographic analysis. Endocrinology 114, 1496–1505.PubMedGoogle Scholar
  125. Welch K. (1962) Active transport of iodide by choroid plexus of the rabbit In vivo Am J. Physiol. 202, 757–760.Google Scholar
  126. Welch K. (1963) Secretion of cerebrospmal flurd by choroid plexus of the rabbit. Am. J. Physiol. 205, 617–624.PubMedGoogle Scholar
  127. Welch K. and Sadler K. (1965) Electrical potentials of the choroid plexus of the rabbit J. Neurosurg 22, 344–351.PubMedGoogle Scholar
  128. Welch K., Araki H., and Arkins T. (1972) Electrlcal potentials of the lamina epithelialis chorozdea of the fourth ventricle of the cat in vitro: Relationship to the CSF blood potential. Dev. Med Child Neurol. 14,(suppl. 27), 146–151.Google Scholar
  129. Wenk E. J., Levine S., and Hoenig E M. (1979) Fine structure of contrasting choroid plexus lesions caused by tertiary amines or cyclophosphamide. J. Neuropathol. Exp. Neurol. 38, 1–9PubMedGoogle Scholar
  130. Woodbury D. M., Johanson C. E., and Brondsted H. (1974) Maturation of the Blood-Brain and Blood-CSF Barriers and Transport Systems, in Narcotics and the Hypothalamus (Zimmermann E. and George R., eds.) Raven, New York.Google Scholar
  131. Wright E. M. (1972) Mechanisms of ion transport across the choroid plexus. J. Physiol 226, 545–571.PubMedGoogle Scholar
  132. Wright E. M. (1974) Active transport of glycine across the frog arachnoid membrane. Brain Res. 76, 354–358.PubMedGoogle Scholar
  133. Wright E. M. (1978) Transport processes in the formation of the cere-brospinal fluid. Rev. Physiol. Biochem. Pharmacol 83, 1–34.Google Scholar
  134. Wright E. M. (1984) Electrophysiology of plasma membrane vesicles. Am. J Physlol 246, F363–F372.Google Scholar
  135. Wright P. M., Noguelra G. J., and Levin E. (1971) Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid. Exp. Brain Res. 13, 294–305.Google Scholar
  136. Wright S. H., Kippen I., Klmenberg J. R., and Wright E. M. (1980) Specificity of the transport system for tricarboxylic acid cycle in-termediates in renal brush borders. J Membrane Biol 57, 73–82.Google Scholar
  137. Yagaloff K. A. and Hartig P. R. (1985) 1251-Lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells J. Neurosci., 5(12), 3178–3183PubMedGoogle Scholar
  138. Yuen T. G. H. and Agnew W. F. (1978) Ultrastructural alterations during choroid plexus incubatrons. Exp.Neurol. 60, 96–115.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Conrad E. Johanson
    • 1
  1. 1.Program in NeurosurgeryBrown University and Rhode Island HospitalProvidence

Personalised recommendations