Skip to main content

Measurement of Metabolic Activity Associated with Ion Shifts

  • Protocol
The Neuronal Microenvironment

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

Brain “function” comprises the activities that transfer and integrate information wit-*hin and among brain cells. Such information consists of changes in electrical potentials that exist across cell membranes. Electrical potentials are characteristic of both neurons and glia because of the asymmetrical distribution of ions, particularly Na+ and K+, across the membranes of these cells, between the intracellular and extracellular milieu. Under normal circumstances, the intracellular K+ activity is more than 30 times greater than that in the extracellular space, whereas the extracellular Na+ activity is 10 or more times greater than that within these cells (e.g., Katz, 1966; Katzman and Pappius, 1973). These transmembrane ion gradients produce a situation equivalent to a battery between cells and their external environment, the inside of brain cells being negative with respect to their outside. Whenever ion gradients change, such as occurs in response to ionic or neurotransmitter-mediated changes in membrane conductances (permeability), there are changes in transmembrane electrical potentials. These voltage shifts are the “information” of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvanitake A. and Chalazonitis N. (1947) De la nature des. III. Recherces spectra kymographiques sur les cytochromes de neurons in vivo. Arch Int. Physiol. 54, 441–457.

    Google Scholar 

  • Astrup J, (1982) Energy-requiring cell functions in the ischemic brain. J. Neurosurg. 56, 482–497.

    PubMed  CAS  Google Scholar 

  • Astrup J., Moller Sorenson P., and Rahbek Sorensen H. (1981) Oxygen and glucose consumption related to Na+-K+ transport in the canme brain. Stroke 12, 726–730.

    PubMed  CAS  Google Scholar 

  • Austin G., Haugen G., and LaManna J C. (1977) Cortical Oxidative Metabolism Following Microanastomosis for Brain Ischemia, in Oxygen and Phystological Function (Jobsis F. F., ed.) Professional Information Library, Dallas, Texas.

    Google Scholar 

  • Avi-Dor J. J., Olson M., Doherty M. D., and Kaplan N. O. (1962) Fluorescence of pyridine nucleotides in mitochondria. J. Biol. Chem 237, 2377–2383.

    CAS  Google Scholar 

  • Balaban R. S. and Sylvia A. L. (1981) Spectrophotometric monitoring of O2 delivery to the exposed rat kidney. Am. J. Physiol. F257–F262.

    Google Scholar 

  • Balaban R. S., Kantor H. L., and Ferretti J. A. (1983) In vivo flux between phosphocreatine and adenosine triphosphate determined by two-dimensional phosphorous NMR. J. Biol Chem. 258, 12787–12789.

    PubMed  CAS  Google Scholar 

  • Bashford C. L., Barlow C. H., Chance B., Haselgrove J., and Sorge J. (1982) Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am. J. Physiol. C265–271.

    Google Scholar 

  • Baumberger J. P. (1939) The relation between the “oxidation-reduction potential” and the oxygen consumption rate of yeast cell suspensions. Cold Spring Harbor Symp. Quant. Biol. 7, 195–215.

    CAS  Google Scholar 

  • Borgstrom L., Chapman A. G., and Siesjo B. K. (1976) Glucose consumption in the cerebral cortex of rat during bicuculline-induced status epilepticus. J. Neurochem. 27, 971–973.

    PubMed  CAS  Google Scholar 

  • Boyer P. D. and Theorell H. (1956) The change in reduced diphosphopyridme nucleotide (DPNH) fluorescecen upon combination with liver alcohol dehydrogenase (ADH). Acta Chem. Stand. 10, 447–450.

    CAS  Google Scholar 

  • Brazy J. E., Lewis D. V., Mltnick M. H., and Jobsls-Vandervliet, F. F. (1985) Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics 75, 217–225.

    PubMed  CAS  Google Scholar 

  • Brlzzee B. L. and Kreisman N. R. (1984) Quantification of cerebral oxygenation by in situ measurements of reduction/oxidation (redox) changes in cytochrome oxldase: Approaches and limitations. Soc. Neurosci. Abst. 10, 1004.

    Google Scholar 

  • Cady E. B., Dawson M. J., Hope P. L., Tofts P. S., Costello A. M., Delpy D. J., Reynolds E. O. R., and Wilkie D. R. (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 2, 1059–1062.

    Google Scholar 

  • Caveness W. F., Kato M., Malamut B., Hosokawa S., Wakisaka S., and O’Neill R. R.(1980) Propagation of focal motor seizures in the pubescent monkey. Ann Neurol. 7, 213–221.

    PubMed  CAS  Google Scholar 

  • Chance B. (1951a) Rapid and sensitive spectrophotometry. I. Accelerated and stopped flow methods for the measurement of the reaction kinetics and spectra of unstable compounds in the visible region of the spectrum. Rev. Sci. Instrum. 22, 619–627.

    CAS  Google Scholar 

  • Chance B. (1951b) Rapid and sensitive spectrophotometry. III. A double beam apparatus. Rev. Sci. Instrum. 22, 634–638.

    CAS  Google Scholar 

  • Chance B. (1957) Techniques for the Assay of the Respiratory Enzymes, in Methods in Enzymology vol. 4, (Colowick S. P. and Kaplan N. O., eds.) Academic, New York.

    Google Scholar 

  • Chance B. and Hollunger G. (1961) The interaction of energy and electron transfer reaction in mitochondria. J. Biol. Chem. 236, 1534–1543.

    PubMed  CAS  Google Scholar 

  • Chance B. and Jobsis F. F. (1959) Changes in fluorescence in a frog sartorius muscle following a twitch. Nature 184, 195–196.

    CAS  Google Scholar 

  • Chance B. and Schoener B. (1966) Fluorometric Studies of Flavin Component of the Respiratory Chain, in Flavins and Flavoprotezns (Slater E. C., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Chance B. and Theorell B. (1959) Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J. Bzol. Chem. 234, 3044–3050.

    CAS  Google Scholar 

  • Chance B. and Williams G. R. (1956) The respiratory chain and oxidative phosphorylation. Adv. Enzymol 17, 65–134.

    CAS  Google Scholar 

  • Chance B., Barlow C., Nakase Y., Takeda H., Mayevsky A., Fischetti R., Graham N., and Sorge J. (1978) Heterogeneity of oxygen delivery in normoxic and hypoxic states: A fluorometer study. Am. j. Physiol. H809–H820.

    Google Scholar 

  • Chance B., Cohen P., Jobsis F. F., and Schoener B. (1962) Intracellular oxidation-reduction states in vivo. Science 137, 499–508.

    PubMed  CAS  Google Scholar 

  • Chance B., Graham N., and Mayer D. (1971) A time sharing fluorometer for the readout of intracellular oxidation-reduction states of NADH and flavo-protein. Rev. Sci. Instrum. 42, 951–957.

    PubMed  CAS  Google Scholar 

  • Chance B., Legallais V., Sorge J., and Graham N. (1975) A versatile time-sharing multichannel spectrophotometer, reflectometer and fluorometer. Anal. Biochem. 66, 498–514.

    PubMed  CAS  Google Scholar 

  • Chance B., Schoener B., Krejci K., Russmann W, Weseman W, Schnitger H., and Bucher T. (1965) Kinetics of fluorescence and metabolite changes in rat liver during a cycle of ischemra. Biochem Z 341, 325–333.

    CAS  Google Scholar 

  • Chance B., Younkin D., Eleff S., Warnell R., and Delivoria-Pappadoppolous M. (1983) 31P-NMR of cortical oxidative metabolism in neonates. Pediatric Res. 17, 397A.

    Google Scholar 

  • Chapman A. G., Meldrum B. S., and Siesjo B. K. (1977) Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28, 1025–1035.

    PubMed  CAS  Google Scholar 

  • Chapman J. B. (1972) Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J. Gen. Phystol. 59, 135–154.

    CAS  Google Scholar 

  • Chi M. M., Lowry C. V., and Lowry O. H. (1978) An improved enzymatic cycle for nicotinamide-adenine dinucleotide phosphate. Anal Biochem. 89, 119–129.

    PubMed  CAS  Google Scholar 

  • Crane P. D., Braun L. B., Cornford E, Cremer J E., Glass M. J., and Oldendorf W. H. (1978) Dose dependent reduction of glucose utilization by pentobarbital in rat brain. Stroke 9, 12–18.

    PubMed  CAS  Google Scholar 

  • Csiba L., Paschen W., and Mies G. (1985) Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain, Brain Res. 336, 167–170.

    PubMed  CAS  Google Scholar 

  • Cummins J. T. and Bull R. J. (1971) Spectrophotometric measurements of metabolic responses in isolated rat brain cortex. Biochim. Biophys. Acta 253, 29–38.

    PubMed  CAS  Google Scholar 

  • Dixon K. C. (1949) Anaerobic leakage of potassium from brain. Bzochem. J, 44, 187–190.

    CAS  Google Scholar 

  • Duckrow R. B., LaManna J. C., and Rosenthal, M. (1982) Sensitive and inexpensilve dual wavelength reflection spectrophotometry using interference filters. Anal. Biochem. 125, 13–23.

    PubMed  CAS  Google Scholar 

  • Duckrow R. B., LaManna J. C., and Rosenthal M. (1981) Disparate recovery of resting and stimulated oxidative metabolism following transient ischemia. Stroke 12, 677–686.

    PubMed  CAS  Google Scholar 

  • Duffy T. E., Howse D. C., and Plum F. (1975) Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24, 925–934.

    PubMed  CAS  Google Scholar 

  • Engel J., Ackermann R. F., Kuhl D. E., and Phelps M E. (1985) Brain Imaging of Glucose Utilization in Convulsive Disorders, in Brain imaging and Brain Function (Sokoloff L., ed.) Raven, New York.

    Google Scholar 

  • Estabrook R. W. (1962) Fluorometric measurements of reduced pyridme nucleotide in cellular and subcellular particles. Anal. Biochem. 4, 231–245.

    PubMed  CAS  Google Scholar 

  • Fein J. M. (1982) Cortical nicotinamide adenine dinucleotide (NADH) kinetics in patients undergoing extracranial-intracranial bypass. Neurosurgy 10, 428–436.

    CAS  Google Scholar 

  • Fisher R. S., Pedley T. A., Moody W. J., and Prince D. A. (1976) The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76–83.

    PubMed  CAS  Google Scholar 

  • Folbergrova J. (1974) Energy metabolism of mouse cerebral cortex during homocysteine convulsions. Brain Res. 81, 443–454.

    PubMed  CAS  Google Scholar 

  • Fox J. S. (1984) PET scan controversy aired. Science 224, 145–146.

    Google Scholar 

  • Frackowiak R. S. J. (1985) Pathophysiology of Human Cerebral Ischemia: Studies with Positron Emission Tomography and 15Oxygen, in Brain Imaging and Brain Function (Sokoloff L., ed.) Raven, New York.

    Google Scholar 

  • Gjedde A. (1982) Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A re-examination. Brain Res. Rev. 4, 237–274.

    CAS  Google Scholar 

  • Grafstein B. (1956) Mechanism of spreading cortical depression. J. Neurophysiol. 19, 154–171.

    PubMed  CAS  Google Scholar 

  • Hackenbrock C. R. (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. J.Cell Biol. 37, 345–352.

    PubMed  CAS  Google Scholar 

  • Hampson R. K., Medina M. A., and Olson M. S. (1982) The use of high-energy microwave irradiation to inactivate mitochondrial metabolism. Ann. Biochem. 123, 49–54.

    CAS  Google Scholar 

  • Harbig K., Chance B., Kovach A. G., and Reivich M. (1976) In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J. Appl. Physiol. 41, 480–488.

    PubMed  CAS  Google Scholar 

  • Harrison M. B., Busto R., Ginsberg M., Rosenthal M., and Sick T. J. (1984) Correlation of mitochondrial oxidative activity, metabolites and ECoG after cerebral ischemia in rat. Soc. Neurosci. Abst. 10, 1004.

    Google Scholar 

  • Harrison M. B., Sick T. J., and Rosenthal M. (1985) Mitochondria redox responses to cerebral ischemia produced by the four-vessel occlusion model in the rat. Neurolog. Res. 7, 142–148.

    CAS  Google Scholar 

  • Hassinen I. and Jamsa T. (1982) A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and rucotinamide nucleotides in intact tissues. Anal Biochem. 120, 365–372.

    PubMed  CAS  Google Scholar 

  • Hawkins R. A. and Miller A. L. (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brain of conscious rats: Implications for quantitative autoradiographic determination of regional glucose utilization. Neuroscience 3, 251–258.

    PubMed  CAS  Google Scholar 

  • Hawkins R. A., Hass W. K., and Ransohoff J. (1979) Measurement of regional brain glucose utilization in vivo using 2-14C glucose. Stroke 10, 690–703.

    PubMed  CAS  Google Scholar 

  • Heinemann U. and Lux H. D. (1977) Ceiling of stimulus Induced rises in extracellular potassium concentration in cerebral cortex of cat. Brain Res. 120, 231–249.

    PubMed  CAS  Google Scholar 

  • Hememann U., Lux H. D., and Gutnick M. J. (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27, 236–243.

    Google Scholar 

  • Hempel F. G., Jobsis F. F., LaManna J. C., Rosenthal M., and Saltzman H. A. (1977) Oxidation of cerebral cytochrome a,a3 by oxygen plus carbon dioxide at hyperbaric pressures. J. Appl. Physiol. 43, 872–877.

    Google Scholar 

  • Hilberman M., Subramanian J. H., Haselgrove J., Cone J. B., Egan J, W., Gyulai L., and Chance B. (1984) In vivo time-resolved brain phosphorus nuclear magnetic resonance. Cereb. Blood Flow Metab. 4, 334–342.

    CAS  Google Scholar 

  • Hodgkin A. L. and Keynes R. D. (1955) Active transport of cations in giant axons from Sepia and Loligo. J. Physzol. (Lond.) 128, 28–60.

    CAS  Google Scholar 

  • Hotson J. R., Sypert, G. W., and Ward A. A. (1973) Extracellular potassium concentration changes during propagated seizures. Exp. Neurol. 38, 20–26.

    PubMed  CAS  Google Scholar 

  • Ji S. C., Chance B., Stuart B. H., and Nathan R. (1977) Two-dimensional analysis of the redox state of the rat cerebral cortex in vivo by NADH fluorescence photography. Brain Res. 119, 357–373.

    PubMed  CAS  Google Scholar 

  • Jobsis F. F. (1977) Non-invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.

    PubMed  CAS  Google Scholar 

  • Jobsis F. F. (1979) Oxidative Metabolic Effects of Cerebral Hypoxia, in Advances in Neurology vol. 23 (Fahn S., Davis J., and Rowland L., eds.) Raven, New York.

    Google Scholar 

  • Jobsis F. F. and Duffield J. C. (1967) Oxidative and glycolytic recovery metabolism in muscle. J. Gen. Physiol 50, 1009–1047.

    PubMed  CAS  Google Scholar 

  • Jobsis F. F. and Stainsby W. N. (1968) Oxidation of NAD during contractions of circulated mammalian skeletal muscle. Resp. Physiol. 4, 292–300.

    CAS  Google Scholar 

  • Jobsis F. F., Keizer J. H., LaManna J. C., and Rosenthal M. (1977) In vivo reflectance spectrophotometry of cytochrome a,a3 in the intact cerebral cortex of the cat. J. Appl. Physiol. 43, 858–872.

    PubMed  CAS  Google Scholar 

  • Jobsis F. F., O’Connor M. J., Rosenthal M., and Van Buren J. M. (1972) Fluorometric Monitoring of Metabolic Activity in the Intact Cerebral Cortex, in Neurophysiology Studied in Man (Somjen G., ed.) Excerpta Medica, Amsterdam.

    Google Scholar 

  • Jobsis F. F., O’Connor M. J., Vitale A., and Vreman H. (1971) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J. Neurophysiol. 34, 735–749.

    PubMed  CAS  Google Scholar 

  • Jobsis F. F., Legallais V., and O’Connor M. J. (1966) A regulated differential fluorometer for the assay of oxidative metabolism in intact tissues. IEEE Trans. Bio-Med. Electron. 13, 93–99, 1966.

    CAS  Google Scholar 

  • Kariman K. and Burkhart D. S. (1985) Non-invasive in vivo spectrophotometric monitoring of brain cytochrome a,a3 revisited. Brain Res. 360, 203–213.

    PubMed  CAS  Google Scholar 

  • Katz B. (1966) Nerve, Muscle and Synapse McGraw-Hill, New York.

    Google Scholar 

  • Katzman R. and Pappius H. M. (1973) Brain Electrolytes and Fluid Metabolism Williams and Wilkins, Baltimore.

    Google Scholar 

  • Keilin D. (1925) On cytochrome, a respiratory pigment common to animals, yeast and higher plants. Proc. Roy. Soc. London B98, 312–339.

    Google Scholar 

  • Keilin D. (1966) The Hzstory of Cell Respiration and Cytochrome Cambridge University Press, Cambridge.

    Google Scholar 

  • Kennedy C., Des Rosiers M., Jehle J. W., Reivich M., Sharp F., and Sokoloff L. (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxy glucose. Science 187, 850–853.

    PubMed  CAS  Google Scholar 

  • Kerr S E. (1935) Studies on the phosphorus compounds of brain. I. Phosphocreatine. J. Biol. Chem. 110, 625–635.

    CAS  Google Scholar 

  • Kirshner J. S., Blank W F, and Myers R. E. (1975) Brain extracellular potassium activity during hypoxia in the cat. Neurology 25, 1001–1005.

    PubMed  CAS  Google Scholar 

  • Kobayashi S., Katsuyuki N., Kaede K., and Ogata E. (1971) Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry. J. Appl. Physiol. 31, 93–96.

    PubMed  CAS  Google Scholar 

  • Kovach A. G. B., Dora E., Eke A., and Gyulai L. (1977) Effects of Microcirculation on Microfluorometric Measurements, in Oxygen and Physiological Function (Jobsis F F., ed.) Professional Information Library, Dallas, Texas.

    Google Scholar 

  • Kraig R. P. and Nicholson C. (1978) Extracellular ionic variations during spreading depression. Neuroscience 3, 1045–1059.

    PubMed  CAS  Google Scholar 

  • Kramer R. S. and Pearlstem R. D. (1979) Cerebral cortical microfluorometry at isobestic wavelengths for correction of vascular artefact. Science 205, 693–696.

    PubMed  CAS  Google Scholar 

  • Kreisman N. R., LaManna J. C., Sick T. J., and Rosenthal M. (1981) Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: Role of systemic factors. Brain Res. 218, 175–188.

    PubMed  CAS  Google Scholar 

  • Krivanek J. (1961) Some metabolic changes accompanying Leao’s spreading cortical depression in the rat. J. Neurochem. 6, 183–189.

    PubMed  CAS  Google Scholar 

  • LaManna J, C., Cordingley G., and Rosenthal M. (1977a) Phenobarbital effects on extracellular potassium activity and respiratory chain metabolism in intact cerebral cortex of cats. J. Pharmacol. Exp. Ther. 200, 560–569.

    PubMed  CAS  Google Scholar 

  • LaManna J. C., Harik, S. I., Light A. I., and Rosenthal M. (1981) Norepinephrine depletion alters cerebral oxldatrve metabolism in the “active” state. Brain Res. 204, 87–101.

    PubMed  CAS  Google Scholar 

  • LaManna J. C., Light A. I., Peretsman S. P., and Rosenthal M. (1984) Oxygen insufficiency during hypoxic hypoxia in rat brain cortex. Brain Res. 293, 313–318.

    PubMed  CAS  Google Scholar 

  • LaManna J. C., Lothman E., Rosenthal M., Somjen G G., and Younts B W. (1977b) Phenytoin, electric, ionic and metabolic responses in cortex and spinal cord. Epilepsia 18, 317–329.

    PubMed  CAS  Google Scholar 

  • LaManna J. C., Pikarsky S. M., Sick T. J., and Rosenthal M. (1985) A rapid-scanning spectrophotometer designed for biological tissues in vitro or in vivo. Anal. Biochem. 144, 483–493.

    PubMed  CAS  Google Scholar 

  • LaManna J. C., Sick T. J., Pikarsky S. M., and Rosenthal M. (submitted) Detection of an oxidizable fraction of cytochrome oxrdase in intact rat brain.

    Google Scholar 

  • Lassen N. A. and Klee A. (1965) Cerebral blood flow determined by saturation and desaturation with Krypton85: An evaluation of the validity of the inert gas method of Kety and Schmrdt. Circ. Res. 16, 26–32.

    PubMed  CAS  Google Scholar 

  • Leao A.A. A. P. (1951) The slow voltage variation of cortical spreading depression of activity. Electroenceph. Clin. Neurophysiol. 3, 315–321.

    PubMed  CAS  Google Scholar 

  • Lewis D. V. and Schuette W. H. (1975) NADH fluorescence and K+ o changes during hippocampal stimulation. J. Neurophysiol. 38, 405–417.

    PubMed  CAS  Google Scholar 

  • Lewis D. V. and Schuette W.H. (1976) NADH fluorescence, K+ o and oxygen consumption in cat cerebral cortex during direct cortical stimulation. Brain Res. 110, 523–535.

    PubMed  CAS  Google Scholar 

  • Lothman E., LaManna J. C., Cordingley G., Rosenthal M., and Somjen G. G. (1975) Responses of electrical potential, potassium levels and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res. 88, 15–36.

    PubMed  CAS  Google Scholar 

  • Lowry O. H. and Passonneau J. V. (1972) A Flexible System of Enzymatic Analysis. Academic, New York.

    Google Scholar 

  • Lu D. M., Davis D. W., Mans A. M., and Hawkins R. A. (1983) Regional cerebral glucose utilization measured with 14C glucose in brief experiments. Am. J. Physiol. 245, C428–C438.

    PubMed  CAS  Google Scholar 

  • Lubbers D. W. and Niesel W. (1959) Der kurzzert-spektralanalysator. Ein schnellarbeitendes spektralphotometer zur laufenden messung von absorption-bzw. extinktionspektren. Pfluger’s Arch. 268, 286–292.

    CAS  Google Scholar 

  • Lubbers D. W. and Wodick R. (1969) The examination of multicomponent systems in biological materials by means of a rapid scanning photometer. Appl. Opt. 8, 1055–1062.

    PubMed  CAS  Google Scholar 

  • MacMunn C. A. (1884) On myohaematin, an intrinsic muscle-pigment of vertebrates and invertebrates, on histohaematin and on the spectrum of the supra-renal bodies. J. Physiol. 5, 24–26.

    Google Scholar 

  • Mandel L. J., Riddle T. G., and LaManna J. C. (1977) A Rapid Scanning Spectrophotometer and Fluorometer for In Vivo Monitoring of Steady-State and Kinetic Optical Properties of Respiratory Enzymes, in Oxygen and Physiological Function (Jobsis F. F., ed.) Professional Information Library, Dallas, Texas.

    Google Scholar 

  • Mangold R., Sokoloff L., Therman P. O., Conner E. H., Kleinerman J., and Kety S. S. (1955) The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men. J. Clin Invest. 34, 1092–1100.

    PubMed  CAS  Google Scholar 

  • Marshall W. H. (1959) Spreading cortical depression of Leao. Physiol. Rev. 39, 239–279.

    PubMed  CAS  Google Scholar 

  • Mayevsky A. (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7, 49–68.

    CAS  Google Scholar 

  • Mayevsky A. and Chance B. (1975) Metabolic responses of the awake cerebral cortex to anoxia, hypoxia, spreading depression and epileptiform activity. Brain Res. 98, 149–165.

    PubMed  CAS  Google Scholar 

  • Mayevsky A. and Zarchin N. (1981) The effects of unilateral carotid occlusion on the responses to decapitation in the gerbil brain. Brain Res. 206, 115–160.

    Google Scholar 

  • Mayevsky A., Zeuthen T., and Chance B. (1974) Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res. 76, 347–349.

    PubMed  CAS  Google Scholar 

  • McCandless D. W., Ed. (1985) Cerebral Energy Metabolism and Metabolic Encephalopathy Plenum, New York.

    Google Scholar 

  • Medina M. A., Jones D. J., Stavinoha W. B., and Ross D. H. (1975) The levels of labile intermediary metabolites in mouse brain following rapid tissue fixation with microwave irradiation. J. Neurochem. 24, 223–227.

    PubMed  CAS  Google Scholar 

  • Minard F. N. and Davis R. V. (1962) The effect of electroshock on the acid-soluble phosphates of rat brain. J. Biol. Chem. 237, 1283–1289.

    CAS  Google Scholar 

  • Moody W. J., Futamachi K. J., and Prince D. A. (1974) Extracellular potassium activity during epileptogenesis. Exp. Neural. 42, 248–262.

    CAS  Google Scholar 

  • Morris M. E. (1974) Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can. J. Physiol. Pharmacol. 52, 872–882.

    PubMed  CAS  Google Scholar 

  • Mutch W. A. C. and Hansen A. J. (1984) Extracellular pH changes during spreading depression and cerebral ischemia: Mechanisms of brain pH regulation. J. Cereb. Blood Flow Metab. 4, 17–27.

    PubMed  CAS  Google Scholar 

  • Nilsson B., Norberg K., Nordstrom C.-H., and Siesjo B. K. (1975) Rate of energy utilization in the cerebral cortex of rats. Acta Physiol. Stand. 93, 569–571.

    CAS  Google Scholar 

  • Novack R., LaManna J. C., and Rosenthal M. (1982) Ethanol and acetaldehyde alter brain mitochondrial redox responses to direct cortical stimulation in vivo. Neuropharmacology 21, 1051–1058.

    PubMed  CAS  Google Scholar 

  • Nuutinen E. M. (1984) Subcellular origin of the surface fluorescence of reduced rucotmamide nucleotides in the isolated perfused rat heart Basic Res. Cardiol. 79, 49–58.

    PubMed  CAS  Google Scholar 

  • O’Connor M. J. (1977) Origin of Labile NADH Tissue Fluorescence, in Oxygen and Physiological Function (Jobsis F. F., ed.) Professional Information Library, Dallas, Texas.

    Google Scholar 

  • Partridge W. M., Crane P D., Mietus L J., and Oldendorf W. H. (1982) Normogram for 2-deoxyglucose lumped constant for rat brain cortex. J. Cereb. Blood Flow Metab. 2, 197–202.

    Google Scholar 

  • Passonneau J. V., Hawkins R. A., Lust D. W., and Welsh F. A. (Eds.) (1980) Cerebral Metabolism and Neural Function. Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Petroff O. A. C, Prichard J. W., Behar K. L., Alger J. R., den Hollander J. A., and Shulman R. G. (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35, 781–788.

    PubMed  CAS  Google Scholar 

  • Phelps M. E., Kuhl D. E., and Mazziotta J. C. (1981) Metabolic mapping of the brain’s response to visual stimulation: Studies in man. Science 211, 1445–1448.

    PubMed  CAS  Google Scholar 

  • Piantadosi C. A. and Jobsis-Vandervliet F. F. (1984) Spectrophotometry of cerebral cytochrome a,a3 in bloodless rats. Brain Res 304, 89–94.

    Google Scholar 

  • Pikarsky S. M., LaManna J. C., Sick T J., and Rosenthal M. (1985) A computer-assisted rapid scanning spectrophotometer with applications to tissues in vitro and in vivo. Comp. Biowed. Res. 18, 408–421.

    CAS  Google Scholar 

  • Plum F., Posner J. B., and Troy B. (1968) Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch. Neural 19, 1–13.

    Google Scholar 

  • Ponten U., Ratcheson R. A., Salford L. G., and Siesjo B. K. (1973) Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 21, 1127–1138.

    PubMed  CAS  Google Scholar 

  • Powers W. J. and Raichle M. E. (1985) Positron emisson tomography and its application to the study of cerebrovascular disease in man. Stroke 16, 361–376.

    PubMed  CAS  Google Scholar 

  • Prichard J, W. and Shulman R. G. (1986) NMR spectroscopy of brain metabolism in vivo. Ann. Rev. Neurosci. 9, 61–85.

    PubMed  CAS  Google Scholar 

  • Prichard J. W., Alger J. R., Behar K. L., Petroff O. A. C., and Shulman R. G. (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc. Natl Acad. Set. USA 80, 2748–2751.

    CAS  Google Scholar 

  • Quistorff B. (1975) A mechanical device for the rapid removal and freezing of liver or brain tissue from unanesthetized and nonparalyzed rats. Anal. Biochem. 68, 102–118.

    PubMed  CAS  Google Scholar 

  • Quistorff B. and Chance B. (1977) Two-and Three-Dimentional Analysis on Brain Oxygen Delivery, in Oxygen and Physiological Function (Jobsis F. F., ed.) Professional Information Library, Dallas, Texas.

    Google Scholar 

  • Quistorff B., Gjedde A., and Hansen A. J. (1979) Spatial analysis of the freeze trapped brain provides for temporal resolution of an event. Metabolic-electrical and blood flow changes during spreading depression. Acta Physiol. Stand. 105, 42A.

    Google Scholar 

  • Radda G. K. and Seeley P. J. (1979) Recent studies on cellular metabolism by nuclear magnetic resonance. Ann. Rev. Physiol. 41, 749–769.

    CAS  Google Scholar 

  • Raichle M. E. (1979) Quantitative in VIVO autoradiography with position emission tomography. Brain Res Rev. 1, 47–68.

    CAS  Google Scholar 

  • Ramsay E., Van Buren J. M., Sick T. J., Rosenthal M., and Kreisman N. R. (1984) Oxygen Sufficiency During Seizures and in Human Epileptic Foci, in Advances in Epileptology, vol. 15 (Porter R. J., Mattson R. H., Ward A. A., and Dam M., eds.) Raven, New York.

    Google Scholar 

  • Relvich M., Alavi A., Cur R. C., and Greenberg J. (1985) Determination of Local Cerebral Glucose Metabolism in Humans: Methodology and Applications to the Study of Sensory and Cognitive Stimuli, in Brain Imaging and Brain Function (Sokoloff L., ed.) Raven, New York.

    Google Scholar 

  • Reivich M., Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Hoffman E., Alani A., Som P., and Sokoloff L. (1979) The (18)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44, 127–137.

    PubMed  CAS  Google Scholar 

  • Renault G., Raynal E., Sinet M., Berthler J. P., Godard B., and Cornillault J. (1982) A laser fluorometer for direct cardiac metabolism investigation. Optics Laser Tech. 14, 143–148.

    CAS  Google Scholar 

  • Renault G., Raynal E., Sinet M., Muffat-Joly M., Berthier J. P., Cornillault J., Godard B., and Pocidalo J. J. (1984) In situ double-beam NADH laser fluorometry: Choice of a reference wavelength. Am. J. Physiol. H491–499.

    Google Scholar 

  • Richter D. and Dawson R. M. C. (1948) Brain metabolism in emotional excitement and in sleep. Am. J. Physiol. 154, 73–79.

    PubMed  CAS  Google Scholar 

  • Rosenthal M. and Jobsis F. F. (1971) Intracellular redox changes in the functioning cerebral cortex. II. Effects of direct cortical stimulation. J. Neurophysiol. 34, 750–761.

    PubMed  CAS  Google Scholar 

  • Rosenthal M. and LaManna J. C. (1981) Applications of Optical Techniques to Brain Physiology, in Advances in Physiologrcal Sciences vol. 8, Cardiovascular Physiology: Heart, Peripheral Circulation and Methodology (Kovach A. G. B., Monos E., and Rubanyi G., eds.) Pergamon, New York.

    Google Scholar 

  • Rosenthal M. and Somjen G. G. (1973) Spreading depression, sustained potential shifts and metabolic activity of cerebral cortex of cats. J. Neurophysiol. 36, 739–749.

    PubMed  CAS  Google Scholar 

  • Rosenthal M., LaManna J. C., Jobsis F. F., Levasseur J. E., Kontos H., and Patterson J. L. Jr. (1976a) Effects of respiratory gases on cytochrome a in intact cerebral cortex: Is there a critlcal pO2? Brain Res. 108, 143–154.

    PubMed  CAS  Google Scholar 

  • Rosenthal M., Martel D. L., LaManna J. C., and Jobsis F. F. (1976b) Oxidative energy metabolism in situ during and following short periods of transient cortical ischemia in cats. Exp Neural. 50, 477–494.

    CAS  Google Scholar 

  • Rosenthal M., LaManna J. C., Yamada S., Younts B. W., and Somjen G G. (1979) Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ. Brain Res. 162, 113–127.

    PubMed  CAS  Google Scholar 

  • Schuette W. H., Whitehouse W. C., Lewis, D. V., O’Connor M. J., and Van Buren J. M. (1974) A television fluorometer for monitoring oxidative metabolism in intact tissue. Med. lnstrument. 8, 331–333.

    CAS  Google Scholar 

  • Schwab H. and Sies H. (1978) A new organ spectrophotometer for sensitive dual-wavelength absorbance measurement and spectral scanning of intact perfused organs. Hope-Seyler’s Z. Physiol. Chem. 359, 385–392.

    CAS  Google Scholar 

  • Shanes A. M. and Berman M. D. (1955) Kinetics of ion movement in the squid giant axon. J. Gen. Physiol. 39, 279–300.

    PubMed  CAS  Google Scholar 

  • Shinohara M., Dollinger B., Brown G., Rapoport S., and Sokoloff L. (1979) Cerebral glucose utilization: Local changes during and after recovery from spreading cortical depression. Science 203, 188–190.

    PubMed  CAS  Google Scholar 

  • Shoubridge E. A., Briggs R. W., and Radda G. (1982) 31P NMR saturation transfer measurements of the steady state rates of creatme kinase and ATP synthetase in the rat brain. FEBS Lett. 140, 288–292.

    CAS  Google Scholar 

  • Sick T. J. and Kreisman N. R. (1981) Potassium ion homeostasis in amphrbian brain: Contribution of active transport and oxrdative metabolism. J. Neurophysiol. 45, 998–1012.

    PubMed  CAS  Google Scholar 

  • Sick T. J., Rosenthal M., LaManna J, C., and Lutz P. L. (1982) Brain potassium ion homeostasis during anoxia and metabolic inhibition in the turtle and rat. Am. J. Physiol. 243, R281–288.

    PubMed  CAS  Google Scholar 

  • Siemkowicz E. and Hansen A. J. (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo-and hyperglycemic rats. Stroke 12, 236–240.

    PubMed  CAS  Google Scholar 

  • Siesjo B.K. (1978) Brain Energy Metabolism. Wiley, New York.

    Google Scholar 

  • Snow T. R., Kleinmann L. H., LaManna J. C., Wechsler A. S., and Jobsis F. F. (1981) Response of cyt a,a3 in the in situ canine heart to transient ischemic episodes. Basic Res. Cardiol. 76, 289–304.

    PubMed  CAS  Google Scholar 

  • Sokoloff L. (1981) Localization of functional activity in the central nervous system by measurements of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab. 1, 7–36

    PubMed  CAS  Google Scholar 

  • Sokoloff L., Mangold R., Wechsler R. L., Kennedy C., and Kety S. S. (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J. Clin. Invest. 34, 1101–1108.

    PubMed  CAS  Google Scholar 

  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., and Shinohara M. (1977) The (14C)deoxy-glucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesesthetized albino rat. J. Neurochem. 28, 897–916.

    PubMed  CAS  Google Scholar 

  • Somjen G. G., Rosenthal M., Cordingley G., LaManna J. C., and Lothman E. (1976) Potassium, neuroglia and oxidative metabolism in central gray matter. Fed. Proc. 35, 1266–1271.

    PubMed  CAS  Google Scholar 

  • Sylvia A. L. and Rosenthal M. (1978) The effect of age and lung pathology on cytochrome a,a3 redox levels in rat cerebral cortex. Brain Res. 146, 109–122.

    PubMed  CAS  Google Scholar 

  • Sylvia A. L., Harik S. I., LaManna J. C., Wilkerson T., and Rosenthal M. (1983) Abnormalities of cerebral oxidative metabolism with aging and their relation to the central noradrenergic system. Gerontology 29, 248–261.

    PubMed  CAS  Google Scholar 

  • Thulborn K. R., du Boulay G. H., Duchen L. W., and Radda G. (1982) A 31P nuclear magnetic resonance in viva study of cerebral ischaemia in the gerbil. J. Cereb. Blood Flow Metab. 2, 299–306.

    PubMed  CAS  Google Scholar 

  • Veech R. L., Harris R. L., Veloso D., and Veech E. H. (1973) Freezeblowing: A new technique for the study of brain in vivo. J. Neurochem. 20, 183–188.

    PubMed  CAS  Google Scholar 

  • Velick S. F. (1961) Spectra and Structure in Enzyme Complexes of Pyridine and Flavine Nucleotides, in Light and Life (McElroy W. D. and Glass B., eds.) Johns Hopkins, Baltimore, Maryland.

    Google Scholar 

  • Vyskocil F., Kriz N., and Bures J. (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res. 39, 255–259.

    PubMed  CAS  Google Scholar 

  • Walker J. L. (1971) Ion specific liquid ion exchanger microelectrodes. Anal. Chem. 43, 89A–93A.

    CAS  Google Scholar 

  • Welsh F. A., O’Connor M. J., and Langfitt, T. W. (1977) Regions of cerebral ischemia located by pyridine nucleotide fluorescence. Science 198, 951–953.

    PubMed  CAS  Google Scholar 

  • Whittam R. (1961) Active cation transport as a pace-maker of respiration. Nature 191, 603–604.

    PubMed  CAS  Google Scholar 

  • Wodick R. and Lubbers D. W. (1974) Quantitative evaluation of reflexion spectra of living tissues. Hoppe-Seyler’s Z. Physiol. Chem. 355, 583–594.

    PubMed  CAS  Google Scholar 

  • Yang C. C. and Legallais V. (1954) A rapid and sensitive recording spectrophotometer for the visible and ultraviolet region, I. Description and performance. Rev. Sci. Inst. 25, 801–807.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Rosenthal, M., Sick, T.J. (1988). Measurement of Metabolic Activity Associated with Ion Shifts. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:187

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics