Cerebrovascular Water and Ion Transport

  • Joseph E. Melton
Part of the Neuromethods book series (NM, volume 9)


The capillaries of the central nervous system (CNS) are unique among the blood vessels of the body in having tight junctions between adjacent endothelial cells, no fenestrae, and a complete pericapillary investment (the glial foot processes) between parenchymal cells and capillary endothelium. The net result of these singular properties is to transform an ordinary capillary endothelium into a formidable restriction to the passage of both solute and solvent, a blood-brain barrier (BBB). The BBB serves to passively isolate the brain interstitial microenvironment from the plasma and, by means of carrier transport systems resident on the capillary endothelial wall, to actively regulate the passage of substrates and metabolites between the blood and the brain extracellular space. Taken together, these active and passive regulatory functions of the BBB serve to maintain an optimal environment for neuronal function and for transfer of information within the brain parenchyma (Nicholson, 1980; Cserr and Bundgaard, 1984).


Cerebral Blood Flow Test Tracer Tracer Activity Brain Blood Flow Reference Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Betz A. L. (1983) Sodium transport in capillaries isolated from rat brain J. Neurochem. 41, 1150–1157.PubMedCrossRefGoogle Scholar
  2. Betz A. L. and Iannotti F. (1983) Simultaneous determination of regional cerebral blood flow and blood-brain glucose transport kmetics in the gerbil. J. Cereb. Blood Flow Metab. 3, 193–199.PubMedGoogle Scholar
  3. Blasberg R. G., Fenstermacher J. D., and Patlak C. S. (1983a) Transport of oc-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab. 3, 8–32.PubMedGoogle Scholar
  4. Blasberg R. G., Patlak C. S., and Fenstermacher J. D. (1983b) Selection of experimental condmons for the accurate determination of blood-brain transfer constants from single-time experiments: A theoretical analysis. J. Cereb. Blood Flow Metab. 3, 215–225.PubMedGoogle Scholar
  5. Bolwig T. G. and Lassen N. A. (1975) The diffusion permeability to water of the rat blood-brain barrier. Acta Physiol. Scam?. 93, 415–422.CrossRefGoogle Scholar
  6. Bowman P. D., Enms S. R., Rarey K. E., Betz A. L., and Goldstein G. W. (1983) Brain microvessel endothelial cells in tissue culture: A model for study of blood-brain barrier permeability. Ann. Neural. 14, 396–402.CrossRefGoogle Scholar
  7. Bradbury M. W. B. (1985) Critique: The blood-brain barrier in vitro. Neurochem lnt 7, 27–28.Google Scholar
  8. Bradbury M. W. B. (1979) The Concept of a Blood Bram Barrier. John Wiley, Chichester.Google Scholar
  9. Bradbury M. W. B. and Kleeman R. (1967) Stability of the potassium content of cerebrospinal fluid and brain. Am. J. Physzol. 213, 519–528.Google Scholar
  10. Bradbury M. W. B., Patlak C. S., and Oldendorf W. H. (1975) Analysis of brain uptake and loss of radrotracers after intracarotrd injection. Am. J. Physiol. 229, 1110–1115.PubMedGoogle Scholar
  11. Clark H. B., Hartman B. K., Raichle M. E., Preskorn S. H., and Larson K. B. (1981) Measurement of cerebral vascular extraction fractions in the rat using intracarotid mjection techniques. Bruin Res. 208, 311–323.CrossRefGoogle Scholar
  12. Crone C. (1963) Permeability of capillaries in various organs as de-termined by use of the indicator diffusion method. Acta Physlol. Stand. 58, 292–305.CrossRefGoogle Scholar
  13. Crone C. (1965) The permeabrllty of brain capillaries to non-electrolytes. Acta Physlol. Stand 104, 407–417.CrossRefGoogle Scholar
  14. Cserr H. F. and Bundgaard M. (1984) Blood-brain interfaces in vertebrates: A comparative approach. Am. J. Physiol. 246, R277–R288.PubMedGoogle Scholar
  15. Cserr H. F., Cooper N., Suri K., and Patlak C. S. (1981) Efflux of radrolabeled polyethylene glycols and albumin from rat brain. Am. J. Physrol. 240, F319–F328.Google Scholar
  16. Daniel P. M., Donaldson J., and Pratt O. E., (1975) A method for injecting substances into the clrculation to react rapidly and to maintain a steady level. With examples of its application in the study of carbohydrate and amino acid metabolism. Med. Biol. Eng. 13, 214–227PubMedCrossRefGoogle Scholar
  17. Davson H. and Welch K. (1971) The permeation of several materials into the fluids of the rabbit’s brain. J. Physlol. 218, 337–351.Google Scholar
  18. Dick A. P., Hank S. I., Klip A., and Walker D. M. (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. PYOC. Natl. Acad. Sci. USA 81, 7233–7237.CrossRefGoogle Scholar
  19. Elchlmg J. O., Raichle M. E., Grubb R. L., and Ter-Pogossian M. M. (1974) Evidence of the limitations of water as a freely diffusable tracer in the brain of the rhesus monkey. Czrc. Res. 35, 358–364.Google Scholar
  20. Eisenberg H. M., Suddith R. L., and Crawford J. S. (1980) Transport of Sodium and Potassium Across the Blood-Brain Barrier, in The Cerebral Mzcrovasculature (Elsenberg H. M. and Suddith R. L., eds.) Plenum, New York.Google Scholar
  21. Fenstermacher J. D. (1985) Flow of Water and Solutes Across the Blood-Brain Barrier, in Trauma of the Central Nervous System (Dacey R. G., ed.) Raven, New York.Google Scholar
  22. Fenstermacher J. D. (1984) Volume Regulation of the Central Nervous System, in Edema (Staub N. and Taylor A. E., eds.) Raven, New York.Google Scholar
  23. Fenstermacher J. D. (1983) Drug Transfer Across the Blood-Brain Barrier, in Topics zn Pharmaceutical Sczences 1983 (Breimer D. and Speiser P., eds.), Elsevrer, Amsterdam.Google Scholar
  24. Fenstermacher J. D. and Johnson J. A. (1966) Filtration and reflection coefficients of the rabbit blood-brain barrier. Am. 1, Physiol. 211, 341–346.Google Scholar
  25. Fenstermacher J. D. and Rapoport S. I. (1984) The Blood-Brain Barrier, in Handbook of Physiology section 2. The Cardzovascular System vol. IV (Renkin E. M. and Michel C. C., eds.) American Physiological Society, Bethesda, Maryland.Google Scholar
  26. Fenstermacher J. D., Blasberg R. G., and Patlak, C. S. (1981) Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol. Ther. 14, 217–248.PubMedCrossRefGoogle Scholar
  27. Furlow T. W. and Bass N. H. (1976) Cerebral hemodynamics in the rat assessed by a non-diffusible indicator-dilution technique. Brazn Res 110, 366–370.CrossRefGoogle Scholar
  28. Gledde A. J., Hansen A. J., and Siemkowicz E. (1980) Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physlol. Stand. 108, 321–330.CrossRefGoogle Scholar
  29. Go K. G., Lammertsma A., Paans A., Vaalburg W., and Woldring M., (1981) Extraction of water labeled with oxygen 15 during single capillary transit Influence of blood pressure, osmolarity and blood-brain barrier damage. Arch. Neurol. 38, 581–584.PubMedGoogle Scholar
  30. Hardebo J. E. and Nilsson B. (1979) Estimation of cerebral extraction of circulating compounds by the brain uptake index method: Influence of circulation time, volume inlection, and cerebral blood flow Actu Physiol. Stand. 107, 153–159.CrossRefGoogle Scholar
  31. Hawkins R. A., Mans A. M., and Biebuyck J. F. (1982) Amino acid supply to individual cerebral structures in awake and anesthetized rats. Am. J. Physiol. 242, El–El1.Google Scholar
  32. Herscovitch P. and Raichle M. E. (1985) What is the correct value for the brain-blood partition coefficient for water? J. Cereb. Blood Flow Metab. 5, 65–69.PubMedGoogle Scholar
  33. Hertz M. M. and Paulson O. B., (1980) Heterogeneity of cerebral capillary flow and its consequences for estimation of blood-brain barrier permeability. J. Clan. lnvest 65, 1145–1151CrossRefGoogle Scholar
  34. House C. R. (1974) Water Transport zn Cells and Tzssues pp 36–76. Williams and Wilkms, Baltimore, Maryland.Google Scholar
  35. Joo F. (1985) The blood-brain barrier zn vitro: Ten years of research on microvessels isolated from the brain. Neurochem. Int. 7, 1–25.PubMedCrossRefGoogle Scholar
  36. Kempski O., Spatz M., Valet G., and Baethmann A. (1985) Cell volume regulation of cerebrovascular endothelium in vitro. J. Cell. Physzol. 123, 51–54.Google Scholar
  37. Lajtha A. and Toth J. (1962) The efflux of intracerebrally administered amino acids from the brain. J. Neurochem. 9, 199–212.PubMedCrossRefGoogle Scholar
  38. Lassen N. A. and Crone C. (1970) The Extraction Fraction of a Capillary Bed to Hydrophilic Molecules, Theoretical Considerations Regarding the Single Injection Technique With a Discussion of the Role of Diffusion Between Laminar Streams (Taylor’s Effect), in Capdlary Permeabrlity (Crone C. and Lassen N. A., eds) Alfred Benzon Symposium II, Academic, New York.Google Scholar
  39. Lassen N. A., Trap-Jensen J., Alexander S. C., Olesen J., and Paulson O. B. (1971) Blood-brain barrier studies in man using the double-indicator method. Am. j. Physiol. 220, 1627–1631.PubMedGoogle Scholar
  40. Levin V. A. (1980) Relationship of octanol/water partition coefficrent and molecular weight to rat brain capillary permeability. J. Med. Chem. 23, 682–684.PubMedCrossRefGoogle Scholar
  41. Levin V. A. and Patlak C. S. (1972) A compartmental analysis of 24Na in rat cerebrum, sciatic nerve, and cerebrospinal fluid. J. Physlol. 224, 559–581.Google Scholar
  42. Melton J. E. and Nattie E. E. (1983) Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am. J. Physiol. 244, R724–R732.PubMedGoogle Scholar
  43. Murray J. E. and Plioplys A. (1972) An indicator drlution technique for study of blood-to-brain solute passage in the rat. J. Appl. Physzol. 33, 681–683Google Scholar
  44. Nicholson C. (1980) Dynamics of the brain cell microenvironment. Neurosci. Res. Prog Bull. 18, 177–322.Google Scholar
  45. Ohno K., Pettigrew K. D., and Rapoport S. I. (1978) Lower limits of cerebrovascular permeability to electrolytes in the conscious rat. Am. J. Physlol. 235, H299–H307.Google Scholar
  46. Oldendorf W. H. (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brazn Res. 24, 372–376.CrossRefGoogle Scholar
  47. Oldendorf W. H. and Braun L. D. (1976) [3H]-tryptamme and [3H]-water as diffusible internal standards for measuring brain extraction of radiolabeled substances following carotid inlection. Bruzn Res. 113, 219–224.CrossRefGoogle Scholar
  48. Patlak C. S. and Fenstermacher J. D. (1975) Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am. J Physlol. 229, 877–884.Google Scholar
  49. Patlak C. S. and Paulson O. B. (1981) The role of unstirred layers for water exchange across the blood-brain barrier. Mzcrovasc. Res. 21, 117–127.CrossRefGoogle Scholar
  50. Patlak C. S. and Pettigrew K. D. (1976) A method to obtain infusion schedules for prescribed blood concentration time courses. J. Appl. Physiol. 40, 458–463.PubMedGoogle Scholar
  51. Patlak C. S., Blasberg R. G., and Fenstermacher J. D. (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabol. 3, 1–7.Google Scholar
  52. Paulson O. B., Hertz M. M., Bolwig T. G., and Lassen N. A. (1977) Filtration and diffusion of water across the blood-brain barrier in man. Mzcrovasc Res 13, 113–124.CrossRefGoogle Scholar
  53. Phelps M. S., Huang E. J., Selin C., and Kuhl D. E. (1981) Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability-surface area product. Stroke 12, 607–619.PubMedGoogle Scholar
  54. Pollay M. and Stevens A. (1979) Simultaneous measurement of regional blood flow and glucose extraction in rat brain. Neurochem. Res. 4, 109–123.PubMedCrossRefGoogle Scholar
  55. Preston E., Allen M. and Haas N. (1983) A modified method for measurement of radiotracer permeation across the rat blood-brain barrier. The problem of correcting brain uptake for intravascular tracer. J Neuroscr. Meth. 9, 45–55.CrossRefGoogle Scholar
  56. Raichle M. E. and Grubb R. L. (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143, 191–194.PubMedCrossRefGoogle Scholar
  57. Raichle M. E., Eichling J. O., and Grubb R. L. (1974) Brain permeability of water. Arch. Neurol. 30, 319–321.PubMedGoogle Scholar
  58. Raichle M. E., Eichlmg J. O., Straatman M. G., Welch M. J., Larsen K. and Ter-Pogoswan M. M. (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Am. J, Physiol. 230, 543–552.Google Scholar
  59. Raichle M. E., Hartman B. K., Eichling J. O., and Sharpe L. G. (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Pm. Natl. Acud. Sci. USA 72, 3726–3730.CrossRefGoogle Scholar
  60. Rapoport S. I., Ohno K, and Pettigrew K. D. (1979) Drug entry into brain. Brain Res. 172, 354–359.PubMedCrossRefGoogle Scholar
  61. Roberts G. W., Larsen K. B., and Spaeth E. E. (1973) Interpretation of mean transit measurements for multiphase systems. J. Theoret. Bzol. 39, 447–475.CrossRefGoogle Scholar
  62. Rosenberg G. A., Kyner W. T., and Estrada E. (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J. Physiol. 238, F42–F49.PubMedGoogle Scholar
  63. Sage J. I., Van Uitert R. L., and Duffy T. E. (1981) Simultaneous measurement of cerebral blood flow and urndirectional movement of substances across the blood-brain barrier: Theory, method and application to leucine. J. Neurochem. 36, 1731–1738.PubMedCrossRefGoogle Scholar
  64. Smith Q. R. and Rapoport S. I (1984) Carrier-mediated transport of chloride across the blood-brain barrier. J. Neurochem. 42, 754–763.PubMedCrossRefGoogle Scholar
  65. Smith Q. R., Johanson C. E., and Woodbury D. M. (1981) Uptake of 36C1 and 22Na by the brain-cerebrospinal fluid system: Comparison of the permeability of the blood-brain and blood-cerebrospmal fluid barriers. J. Neurochem. 37, 117–124.PubMedCrossRefGoogle Scholar
  66. Smith Q. R., Takasato Y., and Rapoport S. I. (1984) Kinetic analysis of L-leucine transport across the blood-brain barrier. Bruin Res. 311, 167–170CrossRefGoogle Scholar
  67. Stulc J., (1967a) The entry of 24Na from blood into the brain of nice during 30 minutes after intravenous isotope injection. Lzfe Scz. 6, 85–95.Google Scholar
  68. Stulc J. (1967b) The permeability of mouse cerebral capillaries to sodium. Life Ser. 6, 1837–1846.CrossRefGoogle Scholar
  69. Szentistvanyi I., Patlak C. S., Ellis R. A., and Cserr H. F. (1984) Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844PubMedGoogle Scholar
  70. Takasato Y., Rapoport S. I., and Smith Q. R. (1984) An zn situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physzol. 247, H486–H493.Google Scholar
  71. Yudilevich D. L. and De Rose N. (1971) Blood-brain transfer of glucose and other molecules measured by rapid indicator diffusion. Am J. Physiol. 220, 841–846.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Joseph E. Melton
    • 1
  1. 1.Department of Medicine, Division of Pulmonary and Critical Care MedicineUMDNJ-Robert Wood Johnson Medical SchoolNew Brunswick

Personalised recommendations