Ion Transport and Volume Measurements in Cell Cultures

  • H. K. Kimelberg
  • Wolfgang Walz
Part of the Neuromethods book series (NM, volume 9)


Studies on transmembrane ion movements in brain cells are of fundamental importance to understanding brain function. Thus, studies on the content and fluxes of major ions such as K+, Na+, Cl, and Ca2+ in neurons are critical to understanding the effects of conductance changes during excitatory or inhibitory events (Hille, 1984; Katz, 1966), and changes in Ca2+ conductance are critical for transmitter release (Hille, 1984; Douglas, 1978) Changes in pHalso affect membrane conductances (Moody, 1983). The complexities of the ion transport processes present in the major nonneuronal cells of the brain (glia, endothelia, and ependyma) are also now beginning to be appreciated and studied, and many of these processes appear to be electrically silent. Such processes appear likely to be involved in control of extracellular ion concentrations and pH and thus will also be important for neuronal function (Varon and Somjen, 1979; Kimelberg and Bourke, 1982; Kimelberg and Ransom, 1986). Exaggeration of such processes may underly the swelling of astroglia frequently seen in various pathological states (Kimelberg and Ransom, 1986). The maintenance of low intracellular sodium concentrations ([Na+],) is also important for maintaining inward Na+ gradients for secondary active cotransport of transmitters and other substances into both neurons and glia (Fonnum et al., 1980).


Astrocyte Culture Cell Surface Area Primary Astrocyte Culture Intracellular Volume Unidirectional Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bakker-Grunwald T. and Sinensky M. (1979) 86Rb+ fluxes in Chinese hamster ovary cells as a function of membrane cholesterol content. Biochim. Biophys. Acta 558, 296–306.PubMedCrossRefGoogle Scholar
  2. Bonting S. L. (1970) Sodium-potassium activated adenosinetriphosphotose and cation transport, in Membranes ad Ion Transport vol. 1, 257–363 (Bittar, E. E., ed.) Wiley, New York.Google Scholar
  3. Boonstra J., Mumery C. L., Tertoolen G. L. G., Van der Saag P. T., and De Laat S. W. (1981a) Characterization of 42K+ and 42Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells. Biochim. Biophys Acta 643, 89–100.PubMedCrossRefGoogle Scholar
  4. Boonstra J., Mummery C. L., Tertoolen L. G. J., Van der Saag P. T., and De Laat S. W. (1981b) Cation transport and growth regulation in neuroblastoma cells. J. Cell. Physiol 107, 75–83.PubMedCrossRefGoogle Scholar
  5. Bottenstein J. E. (1985) Growth and Differentiation of Neural Cells in Defined Media, in Cell Culture in the Neurosciences (Bottenstein J. E. and Sato G., eds.) Plenum, New York.Google Scholar
  6. Bowman C. L. and Kimelberg H. K. (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311, 656–659.PubMedCrossRefGoogle Scholar
  7. Brazy P. C. and Gunn R B (1976) Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68, 583–599.PubMedCrossRefGoogle Scholar
  8. Cabantchik Z. I. and Rothstein A. (1972) The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membrane Biol. 10, 311–330.CrossRefGoogle Scholar
  9. Casteels R. and Droogmans G. (1975) Compartmental Analysis of Ion Movements, in Methods in Pharmacology vol. 3 (Daniel E. E. and Paton D. M., eds.) Plenum, New York.Google Scholar
  10. Cheung R. K., Grinstein S., Dosch H-M., and Gelfand E. W. (1982) Volume regulation by human lymphocytes: Characterization of the ionic basis for regulatory volume decrease. J. Cell Physiol. 112, 189–196.PubMedCrossRefGoogle Scholar
  11. Cook D. A. and Taylor G. S. (1971) The use of the APL/360 system in pharmacology. A computer assisted analysis of efflux data. Comput. Biomed. Res. 4, 157–166.PubMedCrossRefGoogle Scholar
  12. Douglas W. W. (1978) Stimulus-Secretion Coupling: Variations on the Theme of Calcium-Activated Exocytosis Involving Cellular and Extracellular Sources of Calcium, in Respiratory Tract Mucosus CIBA Foundation Symposium 54 New Series, Elsevier North-Holland, Amsterdam.Google Scholar
  13. Erecinska M. and Silver I. A. (1986) The role of glial cells in regulation of neurotransmitter amino acids in the external environment. I. Transmembrane electrical and ion gradients and energy parameters in cultured glial-derived cell lines. Brain Res. 369, 193–202.PubMedCrossRefGoogle Scholar
  14. Feuerzeig W. and Tyler S. A. (1950) A note on exponential fitting of empirical curves, Argonne Nat. Lab. Quart. Rep., ANL 4401, 14–29.Google Scholar
  15. Fonnum F., Karlsen R. L., Malthe-Sorenssen D., Sterri S., and Walaas I. (1980) High Affinity Transport Systems and Their Role in Transmitter Action, in The Cell Surface and Neuronal Function (Cotman C. W., Poste G., and Nicolson G. L., eds.) North-Holland, Amsterdam, New York, Oxford.Google Scholar
  16. Grinstein S. and Furuya W. (1983) The electrochemical H+ gradient of platelet secretory alpha-granules. Contribution of a H+ pump and a Donnan potential. J. Biol. Chem. 258, 7876–7882.PubMedGoogle Scholar
  17. Grmstein S., Rothstein A., Sarkadi B., and Gelfand E. W (1984a) Responses of lymphocytes to anisotonic media: Volume-regulating behavior. Am J. Physiol 246, C204–C215Google Scholar
  18. Grmstein S., Elder B., Clarke C. A, and Buchwald M (1984b) Is cytoplasmic Ca2+ in lymphocytes elevated in cystic fibrosis? Biochim. Biophys. Acta 769, 270–274.CrossRefGoogle Scholar
  19. Grmstein S., Cohen S., and Rothstein A. (1984c) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J. Gen. Physiol. 83, 341–369.CrossRefGoogle Scholar
  20. Grynskiewicz G, Poenie M, and Tsien R. Y (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties J. Biol. Chem. 260, 3440–3450Google Scholar
  21. Hansson E., Ronnback L., Persson L. I., Lowenthal A., Noppe M., Alling C., and Karlsson B. (1984) Cellular composition of primary cultures from cerebral cortex, striatum, hippocampus, brainstem and cerebellum. Brain Res. 300, 9–18.PubMedCrossRefGoogle Scholar
  22. Hayflick L. and Moorhead P S. (1961) The serial cultrvation of human diploid cell strains. Exp. Cell Res. 25, 585–621.CrossRefGoogle Scholar
  23. Hertz L., Juurlink B. H. J, and Szuchet S (1985a) Cell Cultures, in Handbook of Neurochemistry vol. 8 (Lajtha A., ed.) Plenum, New York.Google Scholar
  24. Hertz L., Juurlink B. H. J., Szuchet S., and Walz W. (1985b) Cell and Tissue Cultures, in Neuromethods vol. 1 (Boulton A. A. and Baker G. eds.) Humana, Clifton, N.JGoogle Scholar
  25. Heumann R., Reiser G., Van Calker D., and Hamprecht B. (1982) Polyploid rat glioma cells. Production, oscillations of membrane potential and response to neurohormones. Exp Cell Res. 139, 117–126.PubMedCrossRefGoogle Scholar
  26. Hille B (1984) Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Massachusetts.Google Scholar
  27. Hirata H., Slater N. T., and Kimelberg H. K. (1983) Alpha-adrenergic receptor-mediated depolarization of rat neocortical astrocytes in primary culture. Brain Res. 270, 358–362.PubMedCrossRefGoogle Scholar
  28. Hash L. and Hosli E. (1983) Localization and physiological properties of glycine and GABA receptors in cultures of rat CNS Adv. Biochem Psychopharmacol 37, 36–46.Google Scholar
  29. Hasli L., Hosli E., Zehntner C, Lehmann R., and Lutz T. W (1982) Evidence for the existence of alpha-and beta-adrenoceptors on cultured glial cells—an electrophysiological study. Neuroscience 7, 2867–2872.CrossRefGoogle Scholar
  30. Johnson J. H., Dunn D. P., and Rosenberg R. N. (1982) Furosemidesensitive K+ channel in glioma cells but not neuroblastoma cells in culture. Biochem. Biophys. Res. Commun. 109, 100–105PubMedCrossRefGoogle Scholar
  31. Katz B. (1966) Nerve, Muscle and Synapse McGraw-Hill, New YorkGoogle Scholar
  32. Kettenmann H. and Schachner M. (1985) Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J. Neurosci 5, 3295–3301PubMedGoogle Scholar
  33. Kettenmann H., Orkand R K., and Schachner M. (1983a) Coupling among identified cells in mammalian nervous system cultures. J. Neurosci. 3, 506–516.PubMedGoogle Scholar
  34. Kettenmann H., Sonnhof U., and Schachner M. (1983b) Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes. J. Neurosci. 3, 500–505.PubMedGoogle Scholar
  35. Kettenmann H., Gilbert P., and Schachner M. (1984) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neuvosci Left. 47, 271–276.CrossRefGoogle Scholar
  36. Krmelberg H. K. (1974) Active potassium transport and (Na+ + K+)ATPase activity in cultured glioma and neuroblastoma cells. J. Neurochem. 22, 971–976.CrossRefGoogle Scholar
  37. Kimelberg H. K. (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta 646, 179–184.PubMedCrossRefGoogle Scholar
  38. Klmelberg H. K. and Bourke R S. (1982) Amon Transport in the Nervous System, in Hundbook of Neurochemistry 2nd Ed., vol. 1 (Lajtha A., ed.) Plenum, New York.Google Scholar
  39. Kimelberg H. K. and Frangakis M. V (1985) Furosemide-and bumeta-nide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361, 125–134.PubMedCrossRefGoogle Scholar
  40. Kimelberg H. K. and Hirata H. (1981) Electrophysiology of and sensitivity to furosemide and MK473 of Cl transport in primary astrocyte cultures. Soc Neurosci. Abst. 7, 698.Google Scholar
  41. Kimelberg H. K. and Katz D. M. (1986) Regional differences in 5-hydroxytryptamine and catecholamine uptake in primary astrocyte cultures. J. Neurochem., 47, 1647–1652.PubMedCrossRefGoogle Scholar
  42. Kimelberg H and Ransom B. R. (1986) Physiological and Pathological Aspects of Astrocytic Swelling, in Astrocytes (Fedoroff S. and Vernadakis A, eds.) Academic, Florida.Google Scholar
  43. Kimelberg H. K., Biddlecome S., and Bourke R. S. (1979a) SITS-inhibitable ltransport and Na+-dependent H+ production in primary astroglial cultures Brain Res. 173, 111–124.PubMedGoogle Scholar
  44. Kimelberg H. K., Bowman C., Biddlecome S, and Bourke R. S. (1979b) Cation transport and membrane potential properties of primary astroghal cultures from neonatal rat brains Brain Res. 177, 533–550.PubMedCrossRefGoogle Scholar
  45. Kimelberg H. K., Bourke R. S., Stieg P. E., Barron K. D., Hirata H., Pelton E. W., and Nelson L. R. (1982) Swelling of Astroglia After Injury to the Central Nervous System: Mechanisms and Consequences, in Head Injury: Basic and Clinicul Aspects (Grossman R. G. and Gildenberg P. L., eds.) Raven, New YorkGoogle Scholar
  46. Kletzien R. F., Pariza M. W., Becker J. E., and Potter V. R. (1975) A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal. Biochem 68, 537–544.PubMedCrossRefGoogle Scholar
  47. Kotyk A. and Janacek K. (1975) Cell Membrane Transport. Principles and Techniques 2nd Ed., Plenum, New York.Google Scholar
  48. Kukes G., Elul R., and De Vellis J. (1976a) The ionic basis of the membrane potential in a rat glial cell line. Brain Res. 104, 71–92.PubMedCrossRefGoogle Scholar
  49. Kukes G., De Vellis J., and Elul R. (1976b) A linked active transport system for Na+ and K+ in a glial cell line. Brain Res. 104, 93–105.PubMedCrossRefGoogle Scholar
  50. Kurzinger K, Stadtkus C., and Hamprecht B. (1980) Uptake and energydependent extrusion of calcium in neural cells in culture. Eur J. Biochem. 103, 597–611PubMedCrossRefGoogle Scholar
  51. L’Allemain G., Paris S., and Pouyssegur J. (1984) Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport. J. Chem. 259, 5809–5815.Google Scholar
  52. Lassen U. V., Pape L., and Vestergaard-Bogind B. (1978) Chloride conductance of the Amphiuma red cell membrane. J. Membrane Biol. 39, 27–48.CrossRefGoogle Scholar
  53. Lubin M. (1980) Control of growth by intracellular potassium and sodium concentrations is relaxed in transformed 3T3 cells. Biochem. Biophys. Res. Commun. 97, 1060–1067.PubMedCrossRefGoogle Scholar
  54. Mancini P. and Pilo A. (1970) A computer program for multiexponential fitting by the peeling method. Comput. Biomed. Res 3, 1–14.PubMedCrossRefGoogle Scholar
  55. Martin D. L. and Shain W. (1979) High affinity transport of taurine and beta-alanine and low-affinity transport of gamma-aminobutyric acid by a single transport system in cultured glioma cells. J. Biol. Chem 254, 7076–7084.PubMedGoogle Scholar
  56. Moody Jr. W. J. (1983) Intracellular pH regulation and cell excitability. Neurol. Neurobiol 2, 451–473.Google Scholar
  57. Morrison R. S. and De Vellis J. (1981) Growth of purified astrocytes in a chemically defined medium. Proc. Natl. Acad. Sci. USA 78, 7205–7209.PubMedCrossRefGoogle Scholar
  58. Morrison R. S. and De Vellis J. (1983) Differentiation of purified astrocytes in a chemically defined medium. Dev. Brain Res 9, 337–345.CrossRefGoogle Scholar
  59. Newman E. A. (1984) Regional specialization of retinal glial cell membrane. Nature 309, 155–157.PubMedCrossRefGoogle Scholar
  60. Peacock J H. (1979) Electrophysiology of dissociated hippocampal cultures from fetal mice. Brain Res 169, 247–260.PubMedCrossRefGoogle Scholar
  61. Pearce B. R., Currie D. N., Dutton G. R., Hussey R. E. G., Beale R., and Pigott R. (1981) A simple perfusion chamber for studying neurotransmitter release from cells maintained in monolayer culture. J. Neurosci. Meth. 3, 255–259CrossRefGoogle Scholar
  62. Perl W. (1960) A method for curve-fitting for exponential functions. Int. J. Appl. Radiat. 8, 222.CrossRefGoogle Scholar
  63. Randles J. and Kimmich G. A. (1978) Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells. Am. J. Physiol 234, C64–C72.PubMedGoogle Scholar
  64. Ransom B. R., Neale E., Henkart M., Bullock P. N., and Nelson P. G. (1977) Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologlc propertles. J. Neurophysiol. 40, 1132–1150.PubMedGoogle Scholar
  65. Requena J., Dipolo R., Brmley E. J., and Mullins L. J. (1977) The control of ionized calcium in squid axons. J. Gen. Physiol. 70, 329–353PubMedCrossRefGoogle Scholar
  66. Rindler M. J., Taub M., and Saier Jr M. H. (1979) Uptake of 22Na+ by cultured dog kidney cells (MDCK). J. Biol. Chem. 254, 11431–11439.PubMedGoogle Scholar
  67. Roos A. and Boron W. F. (1981) Intracellular pH. Physlol. Rev. 61, 296–434Google Scholar
  68. Rossing R. B (1966) Evaluation of a computer solution of exponential decay for washout curves. J. Appl. Physiol. 21, 1907–1910.PubMedGoogle Scholar
  69. Sanui H. and Rubin A. H. (1979) Measurement of total, intracellular and surface bound cations in animal cells grown in culture. J. Cell Physiol. 100, 215–225.PubMedCrossRefGoogle Scholar
  70. Schousboe A. and Divac I. (1979) Differences in glutamate uptake in astrocytes cultured from different brain regions. Brain Res. 177, 407–409.PubMedCrossRefGoogle Scholar
  71. Solomon A. K. (1960) Compartmental Methods of Kinetic Analysis, in Mineral Metabolism, An Advanced Treatise (Comar C. L. and Bronner F., eds.) Academic, New York.Google Scholar
  72. Stem W. D. (1967) The Movement of Molecules Across Cell Membranes Aca-demic, New York.Google Scholar
  73. Varon S. S. and Somjen G. G. (1979) Neuron-glia interactions. Neurosci. Res. Prog. Bull. 17, 131–146.Google Scholar
  74. Waddell W. J and Butler T C (1959) Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog. J. Clin. Invest. 38, 720–729.PubMedCrossRefGoogle Scholar
  75. Walz W. and Hertz L. (1983) Comparison between fluxes of potassium and of chloride in astrocytes in primary cultures. Brain Res. 277, 321–328.PubMedCrossRefGoogle Scholar
  76. Walz W. and Hertz L. (1984) Sodium transport in astrocytes. J. Neurosci. Res. 11, 231–239.PubMedCrossRefGoogle Scholar
  77. Walz W. and Hinks E. C. (1985) Carrier-mediated KCl accumulation accompanied by water movements is involved in the control of physiological K+ levels by astrocytes. Brain Res. 343, 44–51.PubMedCrossRefGoogle Scholar
  78. Walz W. and Kimelberg H. K. (1985) Differences in cation transport properties of primary cultures from mouse and rat brain. Brain Res. 340, 333–340.PubMedCrossRefGoogle Scholar
  79. Walz W., Hertz E., and Hertz L. (1983) Lithium-potassium interaction in acutely treated cortical neurons and astrocytes. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 7, 697–702.CrossRefGoogle Scholar
  80. Walz W., Wuttke W., and Hertz L. (1984) Astrocytes in primary cultures: Membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Res. 292, 367–374PubMedCrossRefGoogle Scholar
  81. Warnock D. G., Greger R., Dunham P. B., Benlamm M. A., Frizzell R. A., Field M., Spring K. R., Ives H. E., Aronson P. S., and Seifter J. (1983) Ion transport processes in apical membrane of eplthelia. Fed. Proc. 43, 2473–2487.Google Scholar
  82. Wolpaw E W. and Martin D L. (1984) Cl transport in a glioma cell line: Evidence for two transport mechanisms. Brain Res. 297, 317–327.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • H. K. Kimelberg
    • 1
  • Wolfgang Walz
    • 2
  1. 1.Division of NeurosurgeryAlbany Medical CollegeAlbany
  2. 2.Department of Physiology, College of MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations