Fluid Compartments

Ultrastructural Methods to Identify Extracellular Spaces in the Central Nervous System
  • Asao Hirano
  • Takeo Kato
Part of the Neuromethods book series (NM, volume 9)


Before the advent of the electron microscope, the extracellular space of the central nervous system (CNS) was considered very wide. Since that time, however, fine structural studies have revealed


Extracellular Space Experimental Allergic Encephalomyelitis Peroxidatic Activity Edema Fluid Lanthanum Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson W. A. (1972) The use of exogenous myoglobin as an ultrastructural tracer. J. Hzstochem. Cytochem 20, 672–684.Google Scholar
  2. Bohr V. and Mollgard K. (1974) Tight junctions in human fetal choroid plexus visualized by freeze-etching. Bruin Res. 81, 314–318.CrossRefGoogle Scholar
  3. Bouldin T. W. and Krigman M. R. (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanumion. Bvmn Res. 99, 444–448.CrossRefGoogle Scholar
  4. Brightman M. W. and Reese T. S. (1969) Junctions between intimately opposed cell membranes in the vertebrate brain. J, Cell Bzol. 40, 648–677.CrossRefGoogle Scholar
  5. Brightman M. W., Klatzo I., Olsson Y., and Reese T. S. (1970) The blood-brain barrier to proteins under normal and pathological conditions. J. Neural. Scz. 10, 215–239.CrossRefGoogle Scholar
  6. Carson K. A. and Mesulam M.-M. (1982) Electron microscopic demonstration of neural connections using horseradish peroxidase: A comparison of the tetramethyl-benzidine procedure with seven other histochemical methods. J. Hishxhem. Cytochem. 30, 425–435.Google Scholar
  7. Castel M., Sahar A., and Erlil D. (1974) The movement of lanthanum across diffusion barriers in the choroid plexus of the cat. Brum Res. 67, 178–184.CrossRefGoogle Scholar
  8. Caulfield J. P. and Farquhar M. G. (1974) The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J. Cell Bid. 63, 883–903.CrossRefGoogle Scholar
  9. Claude P. and Goodenough D. A. (1973) Fracture faces of zonulae occludentes from ‘tight’ and ‘leaky’ epithelia. J Cell Bd. 58, 390–400.CrossRefGoogle Scholar
  10. Clementi F. and Palade G. E. (1969) Intestinal capillaries. I. Permeability to peroxidase and ferritin. J, Cell Bid. 41, 33–58.CrossRefGoogle Scholar
  11. Connell C. J. and Mercer K. L. (1974) Freeze-fracture appearance of the capillary endothelm in the cerebral cortex of mouse brain. Am. J. Anat. 140, 595–599.PubMedCrossRefGoogle Scholar
  12. Cotran R. S. and Karnovsky M. J. (1967) Vascular leakage induced by horseradish peroxidase in the rat. Proc. Sot. Exp. Bid. Med. 126, 557–561.Google Scholar
  13. Cuddihy R. G. and Boecker B. B. (1970) Kinetics of lanthanum retention and tissue distribution in the beagle dog following administration of140 LaCl3 by inhalation, gavage and injection. Health Phys. 19, 419–426.PubMedCrossRefGoogle Scholar
  14. Cutler R. W. P., Lorenzo A. V., and Barlow C. F. (1967) Brain vascular permeability to I125 gamma globulin and leukocytes in allergic encephalomyelitis. J Neuroputhol. Exp. Neural. 26, 558–571.CrossRefGoogle Scholar
  15. Droz B. (1975) Autoradiography as a Tool for Visualizing Neurons and Neuronal Processes, in The Use of Axonal Transport for Studies of Neuronal Connectivity (Cowan W. M. and Cuenod M., eds.) Elsevier, AmsterdamGoogle Scholar
  16. Droz B., Rambourg A., and Koenig H. L. (1975) The smooth endoplasmic reticulum, structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Bmzn Res. 93, 1–14.CrossRefGoogle Scholar
  17. Farquhar M. G. and Palade G. E. (1961) Glomerular permeablhty. II. Ferrltin transfer across the glomerular capillary wall in nephrotlc rats. J. Exp. Med. 114, 699–716.PubMedCrossRefGoogle Scholar
  18. Farquhar M. G., Wisslg S. L., and Palade G. E. (1961) Glomerular permeability. I. Ferrltin transfer across the normal glomerular capillary wall. J. Exp. Med. 113, 47–66.PubMedCrossRefGoogle Scholar
  19. Farrant J. L. (1954) An electron microscopic study of ferritin. Biochem. Blophys. Acta 13, 569–576CrossRefGoogle Scholar
  20. Feder N. (1970) A heme-peptide as an ultrastructural tracer. J. Histochem. Cytochem. 18, 911–913.PubMedGoogle Scholar
  21. Feder N. (1971) Microperoxidase. An ultrastructural tracer of low molecular weight. J. Cell Biol. 51, 339–343.PubMedCrossRefGoogle Scholar
  22. Feder N., Reese T. S., and Brightman M. W. (1969) Microperoxidase, a new tracer of low molecular weight. A study of the interstitial compartments of the mouse brain. J. Cell Biol. 43, 35A–36A.Google Scholar
  23. Graham R. C. and Karnovsky M. J. (1966) The early stages of absorption of injected horseradish peroxldase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302.PubMedGoogle Scholar
  24. Graybiel A. M. (1975) Wallerian Degeneration and Anterograde Tracer Methods, in The Use of Axonal Transport for Studies of Neuronal Conlzectivity (Cowan W. M. and Cuenod, M., ed.) Elsevier, Amsterdam.Google Scholar
  25. Hirano A. (1969) The Fine Structure of Brain in Edema, in The Structure and Function of Nervous Tissue vol. 2 (Bourne, G. H., ed.) Academic, New York.Google Scholar
  26. Hirano A. (1981) A Guide to Neuropathology. Igaku-Shoin, Tokyo.Google Scholar
  27. Hirano A. and Dembltzer H. M. (1967) A structural analysis of the myelin sheath in the central nervous system J. Cell Biol. 34, 555–567PubMedCrossRefGoogle Scholar
  28. Hirano A. and Dembitzer H. M. (1969) The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fibers. J. Ultrast Res. 28, 141–149CrossRefGoogle Scholar
  29. Hirano A. and Dembitzer, H. M. (1982) Further studies on the transverse bands. J. Neurocytol. 11, 861–866PubMedCrossRefGoogle Scholar
  30. Hirano A., Dembitzer, H. M., Becker N. H., Levine S., and Zimmerman H. M. (1970) Fine structural alterations of the blood-brain barrier in experimental allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 29, 432–440.PubMedCrossRefGoogle Scholar
  31. Hirano A. and Llena J F. (1983) Morphological Aspects of Brain Edema, in Advances in Cellular Neurobiology vol. 4 (Federoff S. and Hertz L., eds.) Academic, New York.Google Scholar
  32. Hirano A., Becker N. H., and Zimmerman H. M. (1969) Pathological alterations in the cerebral endothelial cell barrier to peroxidase. Arch. Neurol. 20, 300–308.PubMedGoogle Scholar
  33. Hirano A., Zimmerman H. M., and Levine S. (1964a) The fine structure of cerebral fluid accumulation. III. Extracellular spread of cryptococcal polysaccharides in the acute state. Am. J. Pathol. 45, 1–19.PubMedGoogle Scholar
  34. Huano A., Zimmerman H. M., and Levine S. (196413) The fine structure of cerebral fluid accumulation. IV. On the nature and origin of extracellular fluids following cryptococcal polysaccharide implantation. Am. J. Pathol. 45, 195–207.Google Scholar
  35. Hirano A., Zimmerman H. M., and Levine S. (1965) The fine structure of cerebral fluid accumulation. IX. Edema following silver nitrate implantation. Am. J. Pathol. 47, 537–548.PubMedGoogle Scholar
  36. Hirano A., Zimmerman H. M., and Levine S. (1967) Fine Structure of Cerebral Fluid Accumulation, in Bruin Edema (Klatzo I. and Seitelberger F., eds.) Springer-Verlag, New York.Google Scholar
  37. Itoh K., Komshi A., Nomura S., Mizuno N., Nakamura Y., and Sugimoto T. (1979) Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: Cobaltglucose oxidase method. Bruin Res. 175, 341346.CrossRefGoogle Scholar
  38. Jacobson M. (1978) Developmental Neurobzology 2nd Ed., Plenum, New York.Google Scholar
  39. Jones E. G. and Leavitt R. Y. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminer nuclei in the rat, cat and monkey. J. Comp. Neural 154, 349–378.CrossRefGoogle Scholar
  40. Karnovsky M. J. and Revel J. P. (1966) Hexagonal pattern in tight junctions as revealed by neutral lanthanum suspensions. J. Cell Biol. 31, 56A–57A.Google Scholar
  41. Karnovsky M. J. and Rice O. F. (1969) Exogenous cytochrome C as an ultrastructural tracer. J. Histochem. Cytochem. 17, 751–753.PubMedGoogle Scholar
  42. Kato T. (1983) Transient retinal fibers to the inferior colliculs in the newborn albino rat. Neurosci. Lett. 37, 7–9.PubMedCrossRefGoogle Scholar
  43. Kato T., Hirano A., Honda K., Katagiri T., and Sasaki H. (1985a) Transient retino-inferior collicular fibers in neonatal rats: Their persistence after removal of one eye at birth. J. Neuropath. Appl. Neurobiol. 11, 265–272.CrossRefGoogle Scholar
  44. Kato T., Hirano A., Katagiri T., and Sasaki H. (1985b) Transient uncrossed corticospinal fibers in the newborn rat. J. Neuropath. Appl. Neurobiol. 11, 171–178.CrossRefGoogle Scholar
  45. Kim C. C. and Strick P. L. (1976) Critical factors involved in the demonstration of horseradish peroxidase retrograde transport. Brain Res 103, 356–361.PubMedCrossRefGoogle Scholar
  46. Kreutzberg G. W. and Kaiya H. (1974) Exogenous acetylcholinesterase as tracer for extracellular pathways in the brain. Histochemistry 42, 233–237.PubMedCrossRefGoogle Scholar
  47. Kristensson K. and Olsson Y. (1971) Retrograde axonal transport of protein. Brazn Res. 29, 313–365.Google Scholar
  48. Lampert P. and Carpenter S. (1965) Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalomyelitis. J Neuropath. Exp Neurol. 24, 11–24.PubMedCrossRefGoogle Scholar
  49. Leuzinger W. and Baker A. L. (1967) Acetylcholmesterase. I. Large-scale purification, homogeneity, and aminoacid analysis. Proc Natl. Acad. Sci. USA 57, 446–451PubMedCrossRefGoogle Scholar
  50. Lewis P. R. and Shute C. C. (1969) An electron-microscopic study of cholinesterase in the rat adrenal medulla. J. Microsc. 89, 181–193.PubMedGoogle Scholar
  51. Machen T. E., Erlig D., and Wooding F. B. P. (1972) Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell Biol. 54, 302–312.PubMedCrossRefGoogle Scholar
  52. Malmgren L. T. and Olsson Y. (1977) A sensitive histochemical method for light-and electron-microscopic demonstration of horseradish peroxidase. J. Hostochem Cytochem. 25, 1280–1283.Google Scholar
  53. Malmgren L. T., and Olsson Y. (1978) A sensitive method for histochemica1 demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res. 148, 279–294.PubMedCrossRefGoogle Scholar
  54. Mesulam M.-M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcmogemc blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem. 26, 106–117.PubMedGoogle Scholar
  55. Mesulam M.-M., Hegarty E., Barbar H., Carson K. A., Gower E. C., Knapp A. G., Moss M. B., and Mufson E. J. (1980) Additional factors influencing sensitivity in the tetramethyl benzidine method for horseradish peroxidase neurohistochemistry. J. Histochem. Cytochem. 28, 1255–1259.PubMedGoogle Scholar
  56. Milhorat T. H., Davis D. A., and Hammock M K. (1975) Experimental intracerebral movement of electron microscopic tracers of various molecular sizes. J. Neurosurg 42, 315–329.PubMedCrossRefGoogle Scholar
  57. Milhorat T. H., Davis D. A., and Lloyd B. J., Jr. (1973) Two morphologically distinct blood-brain barriers preventing entry of cytochrome C into cerebrospinal fluid. Sczence 180, 76–78.CrossRefGoogle Scholar
  58. Olsson Y., Svensjo E., Arfors K.-E., and Hultstrom D, (1975) Fluorescein labelled dextrans as tracers for vascular permeability studies in the nervous system. Acta Neuropathol. (Berl.) 33, 45–50.PubMedCrossRefGoogle Scholar
  59. Reese T. S. and Karnovsky M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217PubMedCrossRefGoogle Scholar
  60. Rosenbluth J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J. Neurocytol. 5, 731–745.PubMedCrossRefGoogle Scholar
  61. Rosenbluth J. (1985) Normal and Abnormal Axolemmal Structure in Freeze-Fractured Myelmated Fibers, in The Pathology of the Myelinted Axon (Adachi M., Hirano A., and Aronson S. M., eds.) Igaku-Shoin, New York.Google Scholar
  62. Rosene D. R. and Mesulam M.-M. (1978) Fixation variables in horseradish peroxidase neurohistochemistry. I. The effects of fixation time and perfusion procedures upon enzyme activity. J. Histochem. Cytochem. 26, 28–39.PubMedGoogle Scholar
  63. Rowley D. A. (1963) Mast cell damage and vascular injury in the rat: An electron microscopic study of a reaction produced by Thorotrast. Br. J. Exp Pathol. 44, 284–290.PubMedGoogle Scholar
  64. Rozdilsky B. and Olszewsky J. (1957) Permeability of cerebral blood vessels studied by radioactive iodinated bovine albumin. Neurology 7, 270–279.PubMedGoogle Scholar
  65. Sakumoto T., Nagai T., Kimura H., and Maeda T. (1980) Electron microscopic visualization of tetramethylbenzidine reaction product on horseradish peroxidase neurohistochemistry. Cell Mol. Biol. 26, 211–216.Google Scholar
  66. Schnapp B., Peracchia C., and Mugnaini E. (1976) The paranodal axoglial junction in the central nervous system studied with thin sections and freeze-fracture. Neuroscience 1, 181–190.PubMedCrossRefGoogle Scholar
  67. Schonitzer K. and Hollander H. (1981) Anterograde tracing of horseradish peroxidase (HRP) with the electron microscope using the tetramethylbenzidine reaction. J. Neurosci. Meth. 4, 373–383.CrossRefGoogle Scholar
  68. Seligman A. M., Karnovsky M. J., Wasserkrug H. L., and Hanker J. S. (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophihc reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14.PubMedCrossRefGoogle Scholar
  69. Shivers R. R., Edmonds C. L., and DelMaestro R. F. (1984) Microvascular permeability in induced astrocytomas and peritumor neuropil of rat brain. Actu Neuropathol. (Ber.) 64, 192–202.CrossRefGoogle Scholar
  70. Simionescu N. and Palade G. E. (1971) Dextrans and glycogens are particulate tracers for studying capillary permeability. J. Cell Biol. 50, 616–624.PubMedCrossRefGoogle Scholar
  71. Simionescu N., Simionescu M., and Palade G. E. (1972) Permeability of intestinal capillaries. J. Cell Biol 53, 365–392.PubMedCrossRefGoogle Scholar
  72. Simionescu M., Simionescu N., and Palade G. E. (1982) Biochemically Differentiated Microdomams of the Cell Surface of Capillary Endothelium, in Endothelzum (Fishman A. P., ed.) New York Academy of Sciences, New York.Google Scholar
  73. Steinwall O. and Klatzo I. (1965) Selective vulnerability of the blood-brain barrier in chemically induced lesions. J. Neuroputhol. Exp. Neural. 25, 542–559.CrossRefGoogle Scholar
  74. Sturmer C., Bielenberg K., and Spatz B. (1981) Electron-microscopical identification of 3,3′,5,5′-tetra-methylbenzidine reacted horseradish peroxldase after retrograde axoplasmlc transport. Neuroscl Left. 23, 1–6.CrossRefGoogle Scholar
  75. Turner D. F. and Marfurt C. F. (1983) Electron microscopic demonstration of horseradish peroxidase-tetramethyl-benzidme reaction product as a method for identifying sensory nerve fibers in the rat tooth pulp. Neuroscz. Lett 41, 213–217.CrossRefGoogle Scholar
  76. Vacca L. L., Rosario S. L., Zimmerman E. A., Tomashefsky P., Ng P.-Y., and Hsu K. C. (1975) Application of immunoperoxidase techniques to localize horseradish peroxldase-tracer in the central nervous system. J. Histochem. Cytochem. 23, 208–215.PubMedGoogle Scholar
  77. Vulpe M., Hawkins A., and Rozdllsky B. (1960) Permeability of cerebral blood vessels in experimental allergic encephalomyelitis studied by radioactive iodinated bovine albumin. Neurology 10, 171–177.Google Scholar
  78. Westergaard E. and Brightman M. W. (1973) Transport of proteins across normal cerebral arterioles. J. Comp. Neural. 152, 17–44.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Asao Hirano
    • 1
  • Takeo Kato
    • 1
  1. 1.Bluestone Laboratory, Division of Neuropathology, Department of PathologyMontefiore Medical Center, Albert Einstein College of MedicineBronx

Personalised recommendations