Skip to main content
Book cover

Peptides pp 299–347Cite as

Behavioral Tests

Their Interpretation and Significance in the Study of Peptide Action

  • Protocol
  • 321 Accesses

Part of the book series: Neuromethods ((NM,volume 6))

Abstract

Neuropeptides (i.e., peptides found in the nervous system) have received wide general acceptance as regulators of neuronal activity (e.g., Krieger and Liotta, 1979; Hokfelt, 1980). In many cases, neuropeptides were previously known as peptide hormones or had been first isolated from other tissues, frequently the gut. In other cases, hypothalamic peptides known to serve as releasing hormones (i.e., molecules released from the hypothalamus that could either stimulate or inhibit the release of hormones from the pituitary) were subsequently found to have an independent existence elsewhere in the central nervous system (CNS). In some cases, peptides were first discovered in extracts of brain tissue, and, m a very few cases so far, deduced from mRNA sequences found in only a relatively small population of neurons (Sutcliffe et al., 1983). In all cases, neuropeptides appear to have powerful activities as regulators of nervous system function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Ader R and de Wied D (1972) Effects of lysine vasopressin on passive avoidance learning Psychonom. Sci 29, 46–48

    Google Scholar 

  • Ader R., Weijnen J. A W. M., and Moleman P (1972) Retention of a passive avoidance response as a function of the intensity and duration of electric shock Psychonom. Sci 26, 125–128.

    Google Scholar 

  • Anika S. M., Houpt T. R., and Houpt K. A. (1977) Satiety elicited by cholecystokinin in intact and vagotomized rats. Physiol. Behav. 19, 761–766.

    PubMed  CAS  Google Scholar 

  • Antelman S. M and Szechtman H (1975) Tail pinch induces eating in sated rats which appears to depend on nigrostriatal dopamine. Science 189, 731–733

    PubMed  CAS  Google Scholar 

  • Antin J., Gibbs J., Holt J., Young R C., and Smith G. P. (1975) Cholecystokinin elicits the complete behavioral sequence of satiety in rats J. Camp. Physiol Psychol 89, 784–790

    CAS  Google Scholar 

  • Antin J., Gibbs J., and Smith G. P (1978) Cholecystokinin interacts with pregastric food stimulation to elicit satiety in the rat. Physiol. Behav 20, 67–70.

    PubMed  CAS  Google Scholar 

  • Banks W A and Kastin A. J. (1985) Permeability of the blood-brain barrier to neuropeptides The case for penetration. Psychoneuroendo-crinology 10, 385–399.

    CAS  Google Scholar 

  • Berridge M. J. (1985) The molecular basis of communications within the cell Sci Am 253, 142–152.

    PubMed  CAS  Google Scholar 

  • Bohus B. (1977) Effect of desglycinamide-lysine vasopressin (DG-LVP) on sexually motivated T-maze behavior of the male rat. Harm. Behav. 8, 52–61

    CAS  Google Scholar 

  • Bohus B., Gispen W H., and de Wied D. (1973) Effect of lysine vasopressin and ACTH4-10 on conditioned avoidance behavior of hypophysectomized rats. Neuroendocrinology 11, 137–143.

    PubMed  CAS  Google Scholar 

  • Bohus B, Kovacs G. L, and de Wied D (1978) Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes Brain Res. 157, 414–417.

    PubMed  CAS  Google Scholar 

  • Brownfield M. S. and Koslowski G P (1977) The hypothalamo-choroidal tract. I. Immunohistochemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid Cell Tissue Res 178, 111–127.

    PubMed  CAS  Google Scholar 

  • Cherkin A., Eckardt M J, and Gerbrandt L. K. (1976) Memory Proline induces retrograde amnesia in chicks Science 193, 242–244

    PubMed  CAS  Google Scholar 

  • Colbern D., Isaacson R. L, Bohus B., and Gispen W H (1977) Limbic-midbrain lesions and ACTH-induced excessive grooming. Life Sci 21, 393–4

    PubMed  CAS  Google Scholar 

  • Colbern D L, Isaacson R L, Green E. J., and Gispen W. H. (1978) Repeated intraventricular injections of ACTHl-24. The effects of home or novel environments on excessive grooming Behav Biol 23, 381–387

    PubMed  CAS  Google Scholar 

  • Collins S., Walker D., Forsyth P., and Belbeck L. (1983) The effects of proglumide on cholecystokinin-, bombesin-, and glucagon-induced satiety in the rat Life Sci 32, 2223–2229

    PubMed  CAS  Google Scholar 

  • Cornett L E. and Dorsa D. M. (1985) Vasopressin receptor subtypes in dorsal hindbrain and renal medulla. Peptides 6, 85–89

    PubMed  CAS  Google Scholar 

  • Cornford E. M., Braun L. D., Crane P. D., and Oldendorf W. H. (1978) Blood-brain barrier restriction of peptides and the low uptake of enkephalins Endocrinology 103, 1297–13

    PubMed  CAS  Google Scholar 

  • Crawley J. N, Kiss J Z., and Mezey E. (1984) Bilateral midbrain transections block the behavioral effects of cholecystokinin on feeding and exploration in rats. Brain Res 322, 316–321

    PubMed  CAS  Google Scholar 

  • Dunn A J., and Tintner R. (1978) Behavioral responses to intracerebroventricularly administered neurohypophyseal peptides in mice Horm Behav 11, 348–362.

    PubMed  Google Scholar 

  • Della-Fera M A. and Baile C. A. (1979) Cholecystokinin octapeptide. Continuous picomole injections into the cerebral ventricles of sheep suppress feeding Science 206, 471–473

    PubMed  CAS  Google Scholar 

  • Della-Fera M. A, Baile C A, Schneider B. S, and Grinker J A. (1981) Cholecystokinin antibody injected in cerebral ventricles stimulates feeding in sheep. Science 212, 687–689.

    PubMed  CAS  Google Scholar 

  • Denbow D M and Myers R. D. (1982) Eating, drinking and temperature responses to intracerebroventricular cholecystokinin in the chick. Peptides 3, 739–743.

    PubMed  CAS  Google Scholar 

  • De Souza E. B, Perrin M. H, Insel T R, Rivler J, Vale W W., and Kuhar M. J. (1984) Corticotropin-releasing factor receptors in rat forebrain Autoradiographic ldentification Science 224, 1449–1451

    PubMed  Google Scholar 

  • Deviche P and Delius J D. (1981) Short-term modulation of domestic pigeon (Columba livia L) behaviour induced by intraventricular administration of ACTH Z. Tierpsychol 55, 335–342

    PubMed  CAS  Google Scholar 

  • de Wied D (1964) Influence of anterior pituitary on avoidance learning and escape behavior Am. J Physiol. 207, 255–259

    Google Scholar 

  • de Wied D. (1965) The influence of the postenor and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int. J Neuropharmacol. 4, 157–167.

    Google Scholar 

  • de Wied D (1966) Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc Soc. Exp Biol. Med. 122, 28–31

    PubMed  Google Scholar 

  • de Wied D and Bohus B (1966) Long term and short term effects on retention of a conditioned avoidance response in rats by treatment with long acting pitressin and α-MSH Nature 212, 1484–1486

    PubMed  Google Scholar 

  • de Wied D, Greven H. M, Lande S, and Witter A. (1972) Dissociation of the behavioral and endocrine effects of lysine vasopressin by tryptic digestion Br. J Pharmacol 45, 118–122.

    PubMed  Google Scholar 

  • de Wied D., Witter A., and Greven H. M. (1975) Behaviorally active ACTH analogues. Biochem. Pharmacol. 24, 1463–1468.

    PubMed  Google Scholar 

  • deWied D., Gaffori O., van Ree J M., and de Jong W. (1984) Vasopressin antagonists block peripheral as well as central vasopressin receptors Pharmacol Biochem Behav 21, 393–400.

    PubMed  Google Scholar 

  • Dismukes R. K. (1979) New concepts of molecular communication among neurons. Brain Behav Sci. 2, 409–448.

    Google Scholar 

  • Drago F., Canonico P. L., Bitetti R., and Scapagnini U (1980) Systemic and intraventricular prolactin induces excessive grooming. Eur. J. Pharmacol. 65, 457–458.

    PubMed  CAS  Google Scholar 

  • Dunn A. J. (1978) Peptides and behavior: A critical analysis of research strategies. Neurosci. Res. Progr. Bull. 16, 554–555.

    Google Scholar 

  • Dunn A. J. (1984) Effects of ACTH, β-Lipotropin and Related Peptides on the Central Nervous System, in Peptides, Hormones and Behavior: Molecular and Behavioral Neuroendocrinology (Nemeroff C. B. and Dunn A. J., eds.), Spectrum, New York.

    Google Scholar 

  • Dunn A. J. (1987) Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann. NY Acad Sci, in press.

    Google Scholar 

  • Dunn A. J, and Hurd R. W. (1986) ACTH acts via an anterior third ventricular site to elicit grooming behavior Peptides 7, 651–657.

    PubMed  CAS  Google Scholar 

  • Dunn, A. J. (1978) Peptides and behavior: A critical analysis of research strategies. Neurosci. Res Prog. Bull 16, 554–555

    Google Scholar 

  • Dunn A. J. and Vigle G (1985) ACTH-induced grooming behavior involves cerebral cholinergic neurons and muscarinic receptors Neuropharmacology 24, 329–331.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Green E. J., and Isaacson R. L. (1979) Intracerebral adrenocorticotropic hormone mediates novelty-induced grooming in the rat. Science 203, 281–283.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Steelman S, and Delanoy R. (1980) Intraventricular ACTH and vasopressin cause regionally specific changes in cerebral de-oxyglucose uptake. J Neurosci. Res. 5, 485–495.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Guild A. L., Kramarcy N. R., and Ware M D. (1981a) Benzodiazepines decrease grooming in response to novelty but not ACTH or β-endorphin Pharmacol Biochem Behav. 15, 605–608.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Childers S. R, Kramarcy N. R., and Villiger J W (1981b) ACTH-induced grooming involves high-affinity opiate receptors Behav. Neural Biol 31, 105–109.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Alpert J. E., and Iversen S D. (1984) Dopamine denervation of frontal cortex or nucleus accumbens does not affect ACTH-induced grooming behaviour. Behav. Brain Res. 12, 307–315.

    PubMed  CAS  Google Scholar 

  • Dunn A. J., Webster E. W, and Nemeroff C. B. (1985) Neonatal treatment with monosodium glutamate does not alter grooming behavior induced by novelty or adrenocorticotropic hormone. Behav. Neural Biol. 44, 80–89.

    PubMed  CAS  Google Scholar 

  • Ehrenpreis S., Comaty J. E., and Myles S. B. (1978) Naloxone reversible analgesia produced by D-phenylalanine in mice Soc. Neurosci. Abstr. 4, 459.

    Google Scholar 

  • Ettenberg A., Le Moal M., Koob G. F., and Bloom F. E. (1983a) Vasopressin potentiation in the performance of a learned appetitive task: Reversal by a pressor antagonist analog of vasopressin. Pharmacol. Biochem. Behav. 18, 645–647.

    PubMed  CAS  Google Scholar 

  • Ettenberg A., van der Kooy D., Le Moal M., Koob G. F., and Bloom F. E. (1983b) Can aversive properties of (peripherally injected) vasopressin account for its putative role in memory? Behav. Brain Res 7, 331–350.

    PubMed  CAS  Google Scholar 

  • Ettenberg A. (1984) Intracerebroventricular application of a vasopressin antagonist peptide prevents the behavioral actions of vasopressin. Behav. Brain Res. 14, 201–211.

    PubMed  CAS  Google Scholar 

  • Farese R. V. (1983) Phosphomositide metabolism and hormone action. Endocr. Rev. 4, 78–95.

    PubMed  CAS  Google Scholar 

  • Ferrari W., Gessa G. L, and Vargiu L. (1963) Behavioral effects induced by intracisternally injected ACTH and MSH. Ann. NY Acad. Sci. 104, 330–345.

    PubMed  CAS  Google Scholar 

  • Fitzsimons J. T., Epstein A. N., and Johnson A. K. (1977) The Peptide Specificity of Receptors for Angiotensin-Induced Thirst, in Central Actions of Angiotensin (Buckley J. P. and Ferrario C., eds.), Pergamon, New York.

    Google Scholar 

  • Gessa G. L., Pisano M., Vargiu L., Crabai F., and Ferrari W. (1967) Stretching, and yawning movements after intracerebral injection of ACTH. Rev. Can. Biol. 26, 229–236.

    PubMed  CAS  Google Scholar 

  • Gibbs J., Young R. C., and Smith G. P. (1973) Cholecystokinin decreases food intake in rats. J. Camp. Physiol. Psychol. 84, 488–495.

    CAS  Google Scholar 

  • Gibbs J., Falasco J. D., and McHugh P. R. (1976) Cholecystokinin-decreased food intake in rhesus monkeys. Am. J. Physiol. 230,15–18.

    PubMed  CAS  Google Scholar 

  • Gispen W. H. and Isaacson R. L. (1981) ACTH-induced excessive grooming in the rat. Pharmacol. Ther. 12, 209–246.

    PubMed  CAS  Google Scholar 

  • Gispen W. H. and Wiegant V. M. (1976) Opiate antagonists suppress ACTH1-24-induced excessive grooming in the rat. Neurosci. Lett. 2, 159–164.

    PubMed  CAS  Google Scholar 

  • Gispen W. H., Wiegant V. M, Greven H. M., and de Wied D. (1975) The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: Structure-activity studies. Life Sci 17, 645–652

    PubMed  CAS  Google Scholar 

  • Gispen W. H., Wiegant V. M., Bradbury A. F., Hulme E. C., Smyth D. G., Snell C. R.,and de Wied D. (1976) Induction of excessive grooming in the rat by fragments of lipotropin. Nature 264, 794–795.

    PubMed  CAS  Google Scholar 

  • Gispen W. H, Brakkee J H., and Isaacson R. L (1980) Hypophysectomy and novelty-induced grooming in the rat. Behav Neural Biol. 29, 481486.

    Google Scholar 

  • Gmerek D. E. and Cowan A. (1983) Studies on bombesin-induced grooming in rats Peptides 4, 907–913

    PubMed  CAS  Google Scholar 

  • Goldman H., Murphy S., Schneider D R., and Felt B. T. (1979) Cerebral blood flow after treatment with ORG-2766, a potent analog of ACTH4-9. Pharmacol Biochem Behav. 10, 883–887

    PubMed  CAS  Google Scholar 

  • Green E. J., Isaacson R. L., Dunn A. J., and Lanthorn T. H. (1979) Naloxone and haloperidol reduce grooming occurring as an aftereffect of novelty. Behav. Neural Biol 27, 546–551.

    PubMed  CAS  Google Scholar 

  • Greenough W T. (1976) Enduring Brain Effects of Differential Experience and Training, in Neural Mechanisms of Learning and Memory (Rosen-zweig M. R. and Bennett E L, eds ), MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Greven H M and de Wied D. (1977) Influence of peptides structurally related to ACTH and MSH on active avoidance behavior in rats Front. Horm. Res. 4, 140–152

    PubMed  CAS  Google Scholar 

  • Guild A. L. and Dunn A. J. (1982) Dopamine involvement in ACTH-induced grooming behavior. Pharmacol. Biochem. Behav. 17, 31–36.

    PubMed  CAS  Google Scholar 

  • Herz A., Albust K, Matys J., Schubart P., and Taschenachi H S (1970) On the central sites for the antinociceptive action of morphine and fetanyl Neuropharmacology 9, 539–551

    PubMed  CAS  Google Scholar 

  • Hoffman W. E and Phillips M. I. (1976) Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Res 110, 313–330.

    PubMed  CAS  Google Scholar 

  • Hokfelt T., Johansson O., Ljungdahl A., Lundberg J M,and Schultzberg M. (1980) Peptidergic neurones. Nature 284, 515–521

    PubMed  CAS  Google Scholar 

  • Holt J., Antin J., Gibbs J., Young R C.,and Smith G P (1974) Cholecysto-kinin does not produce bait shyness in rats. Physiol. Behav. 12, 497–498.

    PubMed  CAS  Google Scholar 

  • Hostetter G., Jubb S. L, and Kozlowski G. P. (1977) Vasopressin affects the behavior of rats in a positively-rewarded discrimination task. Life Sci. 21, 1323–1328.

    PubMed  CAS  Google Scholar 

  • Isaacson R. L. and Green E. J. (1978) The effect of ACTH1-24 on locomotion, exploration, rearing and grooming Behav. Biol. 24, 118–122

    PubMed  CAS  Google Scholar 

  • Johnson L. R. and Grossman M. I. (1970) Analysis of inhibition of acid secretion by cholecystokinin in dogs. Am. J. Physiol. 218, 550–554.

    PubMed  CAS  Google Scholar 

  • Jolles J., Wiegant V M, and Gispen W. H. (1978) Reduced behavioral effectiveness of ACTH1-24 after a second administration: Interaction with opiates Neurosci Lett 9, 261–266.

    PubMed  CAS  Google Scholar 

  • Jolles J., Rompa-Barendregt J, and Gispen W. H. (1979) Novelty and grooming behavior in the rat. Behav Neural Biol. 25, 563–572

    Google Scholar 

  • Kadar T., Varszegi M, Sudakov S. K, Penke B., and Telegdy G. (1984) Changes in brain monoamine levels of rats during cholecystokinin octapeptide-induced suppression of feeding. Pharmacol Biochem Behav 21, 339–344

    PubMed  CAS  Google Scholar 

  • Katz R. J (1979) Central injection of substance P elicits grooming behavior and motor inhibition in mice. Neurosci Lett 12, 133–136.

    PubMed  CAS  Google Scholar 

  • Katz R (1980) Grooming elicited by intracerebroventricular bombesin and eledoisin in the mouse. Neurophamacology 19, 143–146

    CAS  Google Scholar 

  • Katz R. J and Roth K A (1979) Stress-induced grooming in the rat—an endorphin mediated syndrome. Neurosci Lett 13, 209–212.

    PubMed  CAS  Google Scholar 

  • Kety S S (1970) The Biogenic Amines in the Central Nervous System. Their Possible Roles in Arousal, Emotion and Learning, in The Neurosciences: Second Study Program (Schmitt F. O., ed.), Rockefeller University Press, New York.

    Google Scholar 

  • Koob G. F, LeMoal M, Gaffori O, Manning M., Sawyer W H, Rivier J, and Bloom F E. (1981) Arginine vasopressin and a vasopressin antagonist peptide opposite effects on extinction of active avoidance in rats Regul Peptides 2, 153–163

    CAS  Google Scholar 

  • Koob G F, Dantzer R, Rodriguez F, Bloom F. E., and Le Moal M (1985) Osmotic stress mimics effects of vasopressin on learned behaviour. Nature 316, 750–752

    Google Scholar 

  • Krieger D. T. and Liotta A. S (1979) Pituitary hormones in brain. Where, how and why? Science 205, 366–372.

    PubMed  CAS  Google Scholar 

  • Kuffler S W and Yoshikami D. (1975) The number of transmitter molecules in a quantum: An estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol. 251, 465–482.

    PubMed  CAS  Google Scholar 

  • Kuhar M. J. and Yamamura H. I. (1975) Light autoradiographic localization of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature 253, 560–561.

    PubMed  CAS  Google Scholar 

  • Kulkosky P. J. and Breckenridge C. (1976) Satiety elicited by the C-terminal octapeptide of cholecystokinin pancreozymin in normal and VMH-lesioned rats. Behav Biol 18, 227–234.

    PubMed  CAS  Google Scholar 

  • LaHoste G J, Olson G. A, Kastin A. J., and Olson R D. (1980) Behavioral effects of melanocyte stimulation hormone. Neurosci Biobehav. Rev. 4, 9–16

    PubMed  CAS  Google Scholar 

  • Landas S., Phillips M. I., Stamler J. F., and Raizada M. K. (1980) Visualization of specific angiotensin II binding sites in the brain by fluorescent microscopy. Science 210, 791–793.

    PubMed  CAS  Google Scholar 

  • Lebrun C, Le Moal M, Koob G. F., and Bloom F E (1985) Vasopressin pressor antagonist injected centrally reverses behavioral effects of peripheral injection of vasopressin, but only at doses that reverse increase in blood pressure. Regul. Peptides 11, 173–181.

    CAS  Google Scholar 

  • LeMoal M., Koob G F., Koda L. Y, Bloom F.E, Manning M., Sawyer W. H., and Rivier J. (1981) Vasopressor receptor antagonist prevents behavioural effects of vasopressin Nature 291, 491–493

    CAS  Google Scholar 

  • Lewis R. E. and Phillips M I. (1984) Localization of the central pressor action of bradykinin to the cerebral third ventricle. Am J. Physiol 247, R63–R68

    PubMed  CAS  Google Scholar 

  • Liotta A. S, Li C H., Schussler G. C, and Krieger D. T. (1978) Comparative metabolic clearance rate, volume of distribution and plasma half-life of human β-lipotropin and ACTH Life Sci. 23, 2323–2330.

    PubMed  CAS  Google Scholar 

  • Lorenz D. N. and Goldman S. A. (1982) Vagal mediation of the cholecystokinin satiety effect in rats. Physiol. Behav. 29, 599–604

    PubMed  CAS  Google Scholar 

  • Maclagan N. F. (1937) The role of appetite in the control of body weight. J. Physiol. 90, 385–394

    PubMed  CAS  Google Scholar 

  • Maddison S (1977) Intraperitoneal and intracranial cholecystokinin depress operant responding for food. Physiol Behav 19, 819–824.

    PubMed  CAS  Google Scholar 

  • McLaughlin C. L, Baile C A., and Buonomo F. C (1985) Effect of CCK antibodies on food intake and weight gain in Zucker rats. Physiol Behav. 34, 277–282.

    PubMed  CAS  Google Scholar 

  • Meisenberg G. and Simmons W. H. (1983) Centrally mediated effects of neurohypophyseal hormones. Neurosci Biobehav. Rev. 7, 263–280.

    PubMed  CAS  Google Scholar 

  • Morley J. E. (1982) The ascent of cholecystokinin (CCK)—from gut to brain. Life Sci 30, 479–493.

    PubMed  CAS  Google Scholar 

  • Morley J and Levine A. S. (1982) Corticotropin releasing factor, grooming and ingestive behavior. Life Sci. 31, 1459–1464.

    PubMed  CAS  Google Scholar 

  • Morley J. E., Levine A. S., Kneip J., and Grace M. (1982) The effect of vagotomy on the satiety effects of neuropeptides and naloxone. Life sci. 30, 1943–1947.

    PubMed  CAS  Google Scholar 

  • Myers R D. and McCaleb M L. (1981) Peripheral and intrahypothalamic cholecystokinin act on the noradrenergic “feeding circuit” in the rat’s diencephalon. Neuroscience 6, 645–655.

    PubMed  CAS  Google Scholar 

  • Nemeroff C. B., Osbahr A. J., Bissette G, Jahnke G, Lipton M. A., and Prange A. J. (1978) Cholecystokinin inhibits tail pinch-induced eating in rats. Science 200, 793–794

    PubMed  CAS  Google Scholar 

  • Parrott R. F. and Baldwin B. A. (1981) Operant feeding and drinking in pigs following intracerebroventricular injection of synthetic cholecystokinin octapeptide. Physiol. Behav 26, 419–422.

    PubMed  CAS  Google Scholar 

  • Passaro E., Debas H., Oldendorf W., and Yamada T. (1982) Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation. Brain Res 241, 335–340.

    PubMed  Google Scholar 

  • Pedersen C. A. and Prange A J. (1979) Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl. Acad. Sci. USA 76, 6661–6665.

    PubMed  CAS  Google Scholar 

  • Phillips M. I. (1984) Angiotensin and Drinking. A Model for the Study of Peptide Action in the Brain, in Peptides, Hormones, and Behavior (Nemeroff C B. and Dunn A. J., eds.), Spectrum, New York.

    Google Scholar 

  • Prusiner S., Doak C. W., and Kirk G. (1976) A novel mechanism for group translocation Substrate-product reutilization by γ-glutamyl trans-peptidase in peptide and amino acid transport. J Cell. Physiol 89, 853–863.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I., Klee W A., Pettigrew K. D, and Ohno K. (1980) Entry of opioid peptides into the central nervous system Science 207, 84–86.

    PubMed  CAS  Google Scholar 

  • Rees H. D, Dunn A. J., and Iuvone P M. (1976) Behavioral and biochemical responses of mice to the intraventricular administration of ACTH analogs and lysine vasopressin. Life Sci. 18, 1333–1340.

    PubMed  CAS  Google Scholar 

  • Rioux F., Park W. K., and Regoli D. (1973) Pharmacology of angiotensin antagonists. Can J Physiol. Pharmacol 51, 108–113.

    PubMed  CAS  Google Scholar 

  • Rivier J., Rivier C., and Vale W. (1984) Synthetic competitive antagonists of corticotropin-releasing factor. Effects on ACTH secretion in the rat. Science 224, 889–891.

    PubMed  CAS  Google Scholar 

  • Rodriguez E. M. (1984) Design and Perspectives of Peptide Secreting Neurons, in Peptides, Hormones, and Behavior (Nemeroff C. B. and Dunn A. J., eds.), Spectrum, New York.

    Google Scholar 

  • Ryan J. P and Isaacson R. L (1983) Intra-accumbens injections of ACTH induce excessive grooming in rats Physiol. Psychol 11, 54–58.

    CAS  Google Scholar 

  • Sandman C A. and Kastin A J. (1981) The influence of fragments of the LPH chains on learning, memory and attention in animals and man. Pharmacol. Ther 13, 39–60.

    PubMed  CAS  Google Scholar 

  • Sawyer W. H. and Manning M. (1985) The use of antagonists of vasopressin in studies of its physiological functions. Fed. Proc. 44, 78–80.

    PubMed  CAS  Google Scholar 

  • Schally A. V., Redding T W., Lucien H. W., and Meyer J, (1967) Enterogastrone inhibits eating by fasted mice. Science 157, 210–211.

    PubMed  CAS  Google Scholar 

  • Scheibel M. E. and Scheibel A. B. (1974) Does the nucleus raphe pontis have chemosensor or neuroendocrine functions? Neurosci. Abst Abstracts Society for Neuroscience, 4th Annual Meeting, 409.

    Google Scholar 

  • Scott D. E., Krobisch-Dudley G, Paull W. K, and Kozlowski G. P. (1977) The ventricular system in neuroendocrine mechanisms. III Supra-ependymal neuronal networks in the primate brain. Cell Tiss. Res. 179, 235–254.

    CAS  Google Scholar 

  • Shashoua V. E (1973) Seasonal changes in the learning and activity patterns of goldfish. Science 181, 572–574

    PubMed  CAS  Google Scholar 

  • Smith G. P, Jerome C., Cushin B. J., Eterno R., and Simansky K J. (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036–1037.

    PubMed  CAS  Google Scholar 

  • Smith G. P., Jerome C., and Norgren R (1983) Vagal afferent axons mediate the satiety effect of CCK-8 Soc Neurosci. Abst 9, 902

    Google Scholar 

  • Sokoloff L. (1981) The relationship between function and energy metabolism: Its use in the localization of functional activity in the nervous system. Neurosci Res. Progr. Bull. 19, 159–210

    CAS  Google Scholar 

  • Strupp B J. and Levitsky D A. (1985) A mnemonic role for vasopressin: The evidence for and against. Neurosci Biobehav Rev. 9, 399–411.

    PubMed  CAS  Google Scholar 

  • Sutcliffe J G., Milner R. J., Shinnick T M, and Bloom F. E (1983) Identifying the protein products of brain-specific genes with antibodies to chemically synthesized peptides Cell 33, 671–682

    PubMed  CAS  Google Scholar 

  • Tanaka K., Nicholson W E, and Orth D. N. (1978) Diurnal rhythm and disappearance half-time of endogenous plasma immunoreactive β-MSH (LPH) and ACTH in man. J Clin. Endocrinol. Metab. 46, 883–890.

    PubMed  CAS  Google Scholar 

  • Ungar G. (1973) Evidence for Molecular Coding of Neural Information, in Memory and Transfer of Information Plenum, New York.

    Google Scholar 

  • van Nispen J. W, Tesser G I, Barthe P. L, Maier R, and Schenkel-Hulliger L (1977) Biological activities of ACTH-analogues varied in the active site. Acta Endocrinol 84, 470–484.

    PubMed  Google Scholar 

  • van Wimersma Greidanus T B. and de Wied D. (1971) Effects of systemic and intracerebral administration of two opposite acting ACTH-related peptides on extinction of conditioned avoidance behavior. Neuroendocrinology 7, 291–301

    Google Scholar 

  • van Wimersma Greidanus T B., Dogterom J., and de Wied D. (1975) Intraventricular administration of anti-vasopressin serum inhibits memory consolidation in rats. Life Sci. 16, 637–643.

    Google Scholar 

  • van Wimersma Greidanus T. B., van Dijk A. M A., de Rotte A A., Goedermans J. H J., Croiset G., and Thody A. J. (1978) Involvement of ACTH and MSH in active and passive avoidance behavior. Brain Res Bull. 3, 227–230

    PubMed  Google Scholar 

  • van Wimersma Greidanus T. B, Donker D. K, Van Zinnicq Bergmann F. F. M., Bekenkamp R., Maigret C, and Spruijt B (1985) Comparison between excessive grooming Induced by bombesin or by ACTH. The differential elements of grooming and development of tolerance Peptides 6, 369–372.

    PubMed  Google Scholar 

  • Versteeg D. H. G. (1980) Interaction of peptides related to ACTH, MSH and β-LPH with neurotransmitters in the brain Pharmacol. Ther 11, 535–557

    PubMed  CAS  Google Scholar 

  • Weindl A. (1973) Neuroendocrine Aspects of Circumventricular Organs, in Frontiers in Neuroendocrinology (Ganong W. F. and Martini L., eds.), Oxford University, New York

    Google Scholar 

  • Wiegant V. M. and Gispen W. H. (1977) ACTH-induced excessive grooming in the rat: Latent activity of ACTH4-10 Behav Biol. 19, 554–558

    PubMed  CAS  Google Scholar 

  • Wiegant V M, Gispen W. H, Terenius L., and de Wied D. (1977a) ACTH-like peptides and morphine: Interaction at the level of the CNS. Psychoneuroendocrinology 2, 63–70.

    PubMed  CAS  Google Scholar 

  • Wiegant V. M., Cools A. R., and Gispen W H. (1977b) ACTH-induced excessive grooming involves brain dopamine Eur. J. Pharmacol 41, 343–345.

    PubMed  CAS  Google Scholar 

  • Wiegant V. M., Jolles J., Colbern D. L., Zimmerman E., and Gispen W. H. (1979) Intracerebroventricular ACTH activates the pituitary-adrenal system. Dissociation from a behavioral response. Life Sci. 25, 1791–1796.

    PubMed  CAS  Google Scholar 

  • Williams N. S. and Scampoli D. L. (1984) Handling, ACTH, ACTH1-24, and naloxone effects on preening behavior in domestic chickens Pharmacol. Biochem. Behav. 20, 681–682.

    PubMed  CAS  Google Scholar 

  • Witter A., Greven H. M, and de Wied D (1975) Correlation between structure, behavioral activity and rate of biotransformation of some ACTH 4-9 analogs J. Pharmacol. Exp. Ther. 193, 853–860.

    PubMed  CAS  Google Scholar 

  • Young R. C., Gibbs J, Antin J., Holt J, and Smith G. P. (1974) Absence of satiety during sham feeding in the rat. J Comp Physiol Psych 87, 795–800.

    CAS  Google Scholar 

  • Zwiers H., Aloyo V. J., and Gispen W. H. (1981) Behavioral and neurochemical effects of the new opioid peptide dynorphin-(l-13): Comparison with other neuropeptides. Life Sci. 28, 2545–2551.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this protocol

Cite this protocol

Dunn, A.J., Berridge, C.W. (1987). Behavioral Tests. In: Boulton, A.A., Baker, G.B., Pittman, Q.J. (eds) Peptides. Neuromethods, vol 6. Humana Press. https://doi.org/10.1385/0-89603-105-5:299

Download citation

  • DOI: https://doi.org/10.1385/0-89603-105-5:299

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-105-0

  • Online ISBN: 978-1-59259-611-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics