Skip to main content

Biochemical Approaches to the Study of Peptide Actions

  • Protocol
Book cover Peptides

Part of the book series: Neuromethods ((NM,volume 6))

  • 285 Accesses

Abstract

During the course of the last decade a considerable number of biologically active peptides has been identified in the nervous system; several of these recently discovered peptides fulfill the criteria for a neurotransmitter function (Hökfelt et al., 1980a); Snyder, 1980; Bloom, 1981; Krieger and Martin, 1981a, b; Krieger, 1983; Krieger et al., 1983. This remarkable expansion in the vocabulary of neurotransmission has generated questions that can be addressed, at least in part, with biochemical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler R., Manthrope M., and Varon S. (1979) Separation of neuronal and nonneuronal cells in monolayer cultures from chick embryo optic lobe. Dev. Biol. 69, 424–435.

    PubMed  CAS  Google Scholar 

  • Ahren B., Alumets J., Ericson M., Fahrenkrug J., Fahrenkrug L., Hakanson R., Hedner P, Loren I., Melander A., Rerup C., and Sundler F. (1980) VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion Nature 287, 343–345.

    PubMed  CAS  Google Scholar 

  • Ambler S. K., Brown R. D., and Taylor P. (1984) The relationship between phosphatidylinositol metabolism and mobilization of intracellular calcium elicited by alpha1-adrenergic receptor stimulation in BC3H-1 muscle cells. Mol Pharmacol. 26, 405–413.

    PubMed  CAS  Google Scholar 

  • Amoss M., Burgus R., Blackwell R., Vale W., Fellows R., and Guillemin R. (1971) Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochem. Biophys. Res. Commun. 44, 205.

    PubMed  CAS  Google Scholar 

  • Aston-Jones G. and Bloom F E. (1981a) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-walking cycle. J Neurosci 1, 876–886.

    PubMed  CAS  Google Scholar 

  • Aston-Jones G. and Bloom F. E. (1981b) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1, 887–900.

    PubMed  CAS  Google Scholar 

  • Baudry M. and Lynch G. (1980) Regulation of hippocampal glutamate receptors: Evidence for the involvement of a calcium-activated protease. Proc Natl. Acad. Sci. USA 77, 2298–2302.

    PubMed  CAS  Google Scholar 

  • Baudry M., Evans J., and Lynch G. (1986) Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature 319, 329–331.

    PubMed  CAS  Google Scholar 

  • Baudry M., Bundman M., Smith E., and Lynch G. (1981) Micromolar levels of calcium stimulate proteolytic activity and glutamate receptor binding in rat brain synaptic membranes. Science 212, 937–938.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. and Irvine R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.

    PubMed  CAS  Google Scholar 

  • Bloom F E (1975) The role of cyclic nucleotides in central synaptic transmission. Rev. Physiol. Biochem. Pharmacol. 74, 1–103.

    PubMed  CAS  Google Scholar 

  • Bloom F. E. (1981) Neuropeptides. Sci. Amer. 245, 114–125.

    Google Scholar 

  • Bloom F E. (1983) Chemical Communication in the CNS. Neurotransmitters and Their Function, in Molecular and Cellular lnteractions Underlying Higher Brain Functions, Progress in Brain Research vol. 58 (Changeux J.-P., Glowinski J., Imbert M, and Bloom F. E., eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Bloom F. E (1984) The functional significance of neurotransmitter diversity. Am. J. Physiol. 246, Cl84–C194.

    Google Scholar 

  • Bloom F. E. and McGinty J. F. (1981) Cellular Distribution and Function of Endorphins, in Endogenous Peptides and Learning and Memory Processes (Martinez J. L., Jensen R. A., Messing R. B., Righter H., and McGaugh J. L., eds.), Academic, New York.

    Google Scholar 

  • Bloom F. E., Ueda T., Battenberg E., and Greengard P. (1979) Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc. Natl. Acad. Sci USA 76, 5982–5986.

    PubMed  CAS  Google Scholar 

  • Boler J., Enzman F., Folkers J., Bowers C. Y., and Schally A. V. (1969) The identity of chemical and hormone properties of the thyrotropin-releasing hormone and pyroglutamyl-histidyl-prolineamide. Biochem. Biophys Res Commun. 37, 705–710.

    PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W., Burgus R, Ling N., Butcher M., Rivier J., and Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79.

    PubMed  CAS  Google Scholar 

  • Breckenridge B. M. and Crawford E. J. (1961) The quantitative histochemistry of the brain. Enzymes of glycogen metabolism. J. Neurochem. 7, 234–240.

    CAS  Google Scholar 

  • Breckenridge B. M. and Norman J. H. (1962) Glycogen phosphorylase in brain J. Neurochem 9, 383–392.

    PubMed  CAS  Google Scholar 

  • Breckenridge B. M and Norman J. H. (1965) The conversion of phosphorylase b to phosphorylase a in brain J. Neurochem 12, 51–57.

    PubMed  CAS  Google Scholar 

  • Brostrom C. O., Hunkeler F. L., and Krebs E. J. (1971) The regulation of skeletal muscle phosphorylase kinase by Ca2+ J. Biol Chem. 246, 1961–1967.

    PubMed  CAS  Google Scholar 

  • Brown J. H. and Masters S. B. (1984) Muscarinic regulation of phosphatidylinositol turnover and cyclic nucleotide metabolism in the heart Fed. Proc. 43, 2613–2617.

    PubMed  CAS  Google Scholar 

  • Brown B L., Albano J. D. M., Ekins R. P, Sgherzi A.M., and Tampion W. (1971) A simple and sensitive saturation assay method for the measurement of adenosine 3′: 5′-cyclic monophosphate. Biochem J. 121, 561–562.

    PubMed  CAS  Google Scholar 

  • Brown E., Kendall D. A, and Nahorski S R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices I. Receptor characterisation. J Neurochem. 42, 1379–1387.

    PubMed  CAS  Google Scholar 

  • Bruckner G. and Biesold D (1981) Histochemistry of glycogen deposition in perinatal rat brain: Importance of radial glia cells. J, Neurocytol. 10, 749–757.

    CAS  Google Scholar 

  • Buchel L. and McIlwain H. (1950) Narcotics and the inorganic and creatine phosphates of mammalian brain. Br J. Pharmacol. 5, 465–473.

    CAS  Google Scholar 

  • Buell M. V., Lowry O. H., Roberts N R., Chang M. L W., and Kapphahn J. I. (1958) The quantitative histochemistry of the brain. V. Enzymes of glucose metabolism. J Biol. Chem 232, 979–993.

    PubMed  CAS  Google Scholar 

  • Burgess G. M., Godfrey P. P., McKinney J. S., Berridge M. J, Irvine R F., and Putney, Jr., J. W. (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309, 63–66.

    PubMed  CAS  Google Scholar 

  • Cammermeyer J. and Fenton I. M (1981) Improved preservation of neuronal glycogen by fixation with iodoacetic acid-containing solutions, Exp. Neural. 72, 429–445.

    CAS  Google Scholar 

  • Capponi A M., Lew P. D., Schlegel W., and Pozzan T. (1986) Use of Intracellular Calcium and Membrane Potential Fluorescent Indicators in Neuro-endocrine Cells, in Methods in Enzymology Academic, New York.

    Google Scholar 

  • Carraay R. and Leeman S E. (1976) Characterization of radioimmunoassayable neurotensin in the rat Its differential distribution in the central nervous system, small intestine, and stomach J Biol. Chem 251, 7045–7052.

    Google Scholar 

  • Charest R., Prpić V., Exton J. H., and Blackmore P. F. (1985) Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem. J. 227, 79–90.

    PubMed  CAS  Google Scholar 

  • Cheung W. Y. (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207, 19–27.

    PubMed  CAS  Google Scholar 

  • Chneiweiss H., Glowinski J., and Prémont J. (1985) Vasoactive intestinal polypeptide receptors linked to an adenylate cyclase, and their relationship with biogenic amine-and somatostatin-sensitive adenylate cyclases on central neuronal and glial cells in primary cultures. J Neurochem. 44, 779–786.

    PubMed  CAS  Google Scholar 

  • Cohen P. (1982) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296, 613–620.

    PubMed  CAS  Google Scholar 

  • Connor J. R. and Peters A. (1984) Vasoactive intestinal polypeptide-immunoreactive neurons in rat visual cortex. Neuroscience 12, 1027–1044.

    PubMed  CAS  Google Scholar 

  • Cooper J. R., Bloom F. E., and Roth R. H., eds. (1982) The Biochemical Basis of Neuropharmacology. Oxford University, New York.

    Google Scholar 

  • Costa M., Furness J. B., Buffa R, and Said S. I. (1980) Distribution of enteric nerve cells bodies and axons showing immunoreactivity for vasoactive intestinal polypeptide in the guinea pig intestine. Neuroscience 5, 587–596.

    PubMed  CAS  Google Scholar 

  • Cotman C. W. (1974) Isolation of Synaptosomal and Synaptic Plasma Membrane Fractions, in Methods in Enzymology vol. 31, part A (Fleischer S. and Packer L., eds), Academic, New York.

    Google Scholar 

  • Dahlstrom A. and Fuxe K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, (suppl. 232), 1–55.

    Google Scholar 

  • Daly J. (1975) Role of Cyclic Nucleotides in the Nervous System, in Handbook of Psychopharmacology (Iversen L. L., Iversen S. D., and Snyder S. H., eds.), Plenum, New York.

    Google Scholar 

  • Danforth W. H. and Helmreich E. (1964) Regulation of glycolysis in muscle. The conversion of phosphorylase b to phosphorylase a in frog sartorius muscle. J. Biol. Chem. 239, 3133–3138.

    PubMed  CAS  Google Scholar 

  • Danforth W. H. and Lyon J. B. (1964) Glycogenolysis during tetanic contraction of isolated mouse muscles in the presence and absence of phosphorylase a J. Biol Chem. 239, 4047–4050.

    PubMed  CAS  Google Scholar 

  • Davis G R., Morawski S. G., Santa Ana C. A., and Fordtran J. D. (1980) Mechanism of vasoactive intestinal polypeptide (VIP) action on jejunal water and electrolyte transport in man. Clin. Res. 28, 764A.

    Google Scholar 

  • De Camilli P and Navone F. (1984) Immunocytochemistry as a tool in the study of neurotransmitter actions. Trends Pharmacol. Sci. 5, 300–303.

    Google Scholar 

  • de Duve C. (1965) The separation and characterization of subcellular particles. Harvey Lectures 59, 49–87, Academic, New York.

    Google Scholar 

  • de Robertis E., de Iraldi A. P, Rodriguez de Lores Arnaiz G., and Gomez C. (1961) On the isolation of nerve endings and synaptic vesicles. J Biophys. Biochem Cytol 9, 229–235.

    Google Scholar 

  • Deschodt-Lanckman M., Robberecht P., and Christophe J (1977) Characterization of VIP-sensitive adenylate cyclase in guinea pig brain. FEBS Lett. 83, 76–80

    PubMed  CAS  Google Scholar 

  • Dingledine R., ed. (1984) Brain Slices. Plenum, New York.

    Google Scholar 

  • Dockray G. J. (1980) Cholecystokinins in rat cerebral cortex: Identification, purification and characterization by immunochemical methods. Brain Res. 188, 155–165.

    PubMed  CAS  Google Scholar 

  • Dolphin A. C., Detre J A., Schlichter D J., Nairn A. C., Yeh H. H., Woodward D. J., and Greengard P. (1983) Cyclic nucleotide-dependent protein kinases and some major substrates in the rat cerebellum after neonatal X-irradiation J. Neurochem. 40, 577–581.

    PubMed  CAS  Google Scholar 

  • Douglas W. W. (1980) Autacoids, in The Pharmacological Basis of Therapeutics (Goodman Gilman A, Goodman L S, and Gilman, A., eds.), Macmillan, New York

    Google Scholar 

  • Drummond G I. (1983) Cyclic Nucleotides in the Nervous System, in Advances in Cyclic Nucleotides Research vol. 15 (Greengard P. and Robison G A., eds.), Raven, New York.

    Google Scholar 

  • Drummond G. I. and Bellward G. (1970) Studies on phosphorylase b kinase from neural tissues. J Neurochem. 17, 475–482.

    PubMed  CAS  Google Scholar 

  • Duffy M. J. and Powell D. (1975) Stimulation of brain adenylate cyclase activity by the undecapeptide substance P and its modulation by the calcium ion. Biochem Biophys. Acta 385, 275–280.

    PubMed  CAS  Google Scholar 

  • du Vigneaud V. (1956) Hormones of the posterior pituitary gland Oxytocin and vasopressin Harvey Lectures 50, 1–26.

    Google Scholar 

  • du Vigneaud V., Ressler C., Swan J. M., Roberts C W., Katsoyannis P. G., and Gordon S. (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc 75, 4879–4880.

    Google Scholar 

  • du Vigneaud V., Gish D. T., and Katsoyannis P G. (1954) A synthetic preparation possessing biological properties associated with arginine vasopressin. J. Am. Chem. Soc. 76, 4751–4752.

    Google Scholar 

  • Eckenstein F. and Baughman R. W. (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nuture 309, 153–155.

    CAS  Google Scholar 

  • Edwards C., Nahorski S. R, and Rogers K. J. (1974) In vivo changes of cerebral cyclic adenosine 3′,5′-monophosphate induced by biogenic amines: Association with phosphorylase activation. J. Neurochem. 22, 565–572.

    PubMed  CAS  Google Scholar 

  • Epelbaum J., Tapia-Arancibia L., Besson J., Rotsztejn W. H., and Kordon C. (1979) Vasoactive Intestinal peptide inhibits release of somatostatin from hypothalamus in vitro. Eur J. Pharmacol 58, 493–495.

    PubMed  CAS  Google Scholar 

  • Exton J. H. and Harper S. C. (1975) Role of Cyclic AMP in the Actions of Catecholamines on Hepatic Carbohydrate Metabolism, in Advances in Cyclic Nucleotide Research vol. 5 (Drummond G. I., Greengard P, and Robison G. A., eds.), Raven, New York.

    Google Scholar 

  • Exton J. H., Cherrington A. D., Blackmore P F., Dehaye J. P., Strickland W. G., Jordan J. E, and Chrisman T. D. (1981) Hormonal Regulation of Liver Glycogen Metabolism, in Cold Spring Harbor Conference on Cell Proliferation vol. 8, Cold Spring Harbor Press.

    Google Scholar 

  • Ferron A., Siggins G. R., and Bloom F. E. (1985) Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons Proc. Natl. Acad. Sci USA 82, 8810–8812.

    PubMed  CAS  Google Scholar 

  • Finley J. C. W., Maderdrut J L., Roger L. J., and Petrusz P. (1981) The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience 6, 2173–2192.

    PubMed  CAS  Google Scholar 

  • Fischbach G. D and Nelson P. G. (1977) Cell Culture in Neurobiology, in Handbook of Physiology section I: The Nervous System, vol. I: Cellular Biology of Neurons, part 2 (Kandel E., ed.), American Physiology Society, Bethesda.

    Google Scholar 

  • Fisher S. K., Klinger P. D., and Agranoff B. W. (1983) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol. Chem. 258, 7358–7363.

    PubMed  CAS  Google Scholar 

  • Fuxe K. (1965) Evidence for the existence of monoamine neurons in the central nervous system IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64 (suppl. 247), 36–85.

    Google Scholar 

  • Gispen W. H. and Routtenberg A., eds. (1982) Brain Phosphoproteins Characterization and Function, Progress in Brain Research vol. 56, Elsevier, Amsterdam

    Google Scholar 

  • Glass D. B. and Krebs E. G. (1980) Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Ann Rev. Pharmacol. Toxical. 20, 363–388.

    CAS  Google Scholar 

  • Gray E. G. and Whittaker V. P. (1962) The isolation of nerve endings from brain: An electron microscopic study of the cell fragments of homogenization and centrifugation. J. Anat. 96, 79–88.

    PubMed  CAS  Google Scholar 

  • Groppi Jr., V. E. and Browning E T (1980) Norepinephrine-dependent protein phosphorylation in intact C-6 glioma cells. Analysis by two-dimensional gel electrophoresis. Mol. Pharmacol 18, 427–437.

    PubMed  CAS  Google Scholar 

  • Grossman H. I. (1981) General Concepts, in Gut Peptides (Bloom S. R. and Polak J. H., eds.), Churchil1 Livingstone, Edinburgh.

    Google Scholar 

  • Grynkiewicz G., Poenie M., and Tsien R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  • Guillemin R. (1978a) Peptides in the brain. The new endocrinology of the neuron. Science 202, 390–402

    PubMed  CAS  Google Scholar 

  • Guillemin R. (1978b) Biochemical and Physiological Correlates of Hypothalamic Peptides. The New Endocrinology of the Neuron, in The Hypothalamus (Reichlin S., Baldessarini R. J., and Martin J. B., eds.) Raven, New York.

    Google Scholar 

  • Guillemin R., Brazeau P., Bohlen P., Esch F., Ling N., and Wehrenberg W. B. (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218, 585–587.

    PubMed  CAS  Google Scholar 

  • Havet J. (1937) Le glycogène dans les centres nerveux. Cellule 46, 179–182.

    Google Scholar 

  • Heilmeyer L. M. G., Meyer F., Haschke R. H., and Fischer E. H. (1970) Control of phosphorylase activity in a muscle glycogen particle. II. Activation by calcium. J Biol Chem. 245, 6649–6656.

    PubMed  CAS  Google Scholar 

  • Hemmings, Jr., H. C., Greengard P., Lim Tung H. Y., and Cohen P. (1984a) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503–505.

    PubMed  CAS  Google Scholar 

  • Hemmings, Jr., H. C., Nairn A. C, Aswad D. W., and Greengard P. (1984b) DARPP-32, a dopammein-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J. Neurosci 4, 99–110.

    PubMed  CAS  Google Scholar 

  • Hendry S. H. C., Jones E. G., and Beinfeld M C (1983) Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels Proc Nat1 Acad. Sci. USA 80, 2400–2404

    CAS  Google Scholar 

  • Henn F. A. (1980) Separation of Neuronal and Glial Cells and Subcellular Constituents, in Advances in Cellular Neurobiology vol. 1 (Fedoroff S and Hertz L., eds.), Academic, New York.

    Google Scholar 

  • Hesketh T. R., Smith G. A., Moore J. P, Taylor M. V., and Metcalfe J. C. (1983) Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol. Chem 258, 4876–4882.

    PubMed  CAS  Google Scholar 

  • Hokfelt T., Ljungdahl A., Steinbusch H., Verhofstad A., Nilsson G., Brodin E., Pernow B., and Goldstein M. (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxy-tryptamine-containing neurons in the rat central nervous system. Neuroscience 3, 517–538.

    PubMed  CAS  Google Scholar 

  • Hokfelt T, Johansson O., Ljungdahl A., Lundberg J. M., and Schultzberg M. (1980a) Peptidergic neurones. Nature 284, 515–521.

    PubMed  CAS  Google Scholar 

  • Hokfelt T., Lundberg J. M., Schultzberg M., Johansson O., Skirboll L., Angard A., Fredholm B., Hamberger B., Pernow B., Rehfeld J., and Goldstein M. (1980b) Cellular localization of peptides in neural structures. Proc. Roy. Soc. Lond B210, 63–77.

    Google Scholar 

  • Hökfelt T., Rehfeld J. F., Skirboll L. R., Ivemark B., Goldstein M., and Markey K. (1980c) Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature 285, 476–478.

    PubMed  Google Scholar 

  • Hökfelt T., Skirboll L., Rehfeld J. F., Goldstein M., Markey K., and Dann O. (1980d) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5, 2093–2124.

    PubMed  Google Scholar 

  • Hollingsworth E. B. and Daly J. W. (1985) Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine and 2-chloroadenosine. Biochem. Biophys. Acta 847, 207–216.

    PubMed  CAS  Google Scholar 

  • Hoshino M., Yanaihara C., Hong Y.-M., Kishida S., Katsumaru Y., Vandermeers A., Vandermeers-Piret M.-C., Robberecht P., Christophe J., and Yanaihara N. (1984) Primary structure of helodermin, a VIP-secretin-like peptide isolated from Gila monster venom. FEBS Lett. 178, 233–239.

    PubMed  CAS  Google Scholar 

  • Huang M. and Drummond G. I. (1979) Adenylate cyclase in cerebral microvessels: Action of guanine nucleotides, adenosine and other agonists. Mol. Pharmacol. 16, 462–472.

    PubMed  CAS  Google Scholar 

  • Huang M. and Rorstad O. P. (1983) Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins, and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels. J. Neurochem. 40, 719–726.

    PubMed  CAS  Google Scholar 

  • Huang M. and Rorstad O. P. (1984) Cerebral vascular adenylate cyclase: Evidence for coupling to receptors for vasoactive intestinal peptide and parathyroid hormone. J Neurochem. 43, 849–856.

    PubMed  CAS  Google Scholar 

  • Hughes J., Smith T. W., Kosterlitz H., Fothergill L., Morgan B., and Morris H. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258, 577–579.

    PubMed  CAS  Google Scholar 

  • Iversen L. L. (1984) Amino acids and peptides: Fast and slow chemical signals in the nervous system? Proc. Roy. Soc. Land. B221, 245–260.

    Google Scholar 

  • Iversen L. L., Lee C. M., Gilbert R. F., Hunt S., and Emson P. C. (1980) Regulation of neuropeptide release. Proc. Roy. Soc. Lond. B210, 91–111.

    Google Scholar 

  • Janowsky A., Labarca R., and Paul S. M. (1984) Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.

    PubMed  CAS  Google Scholar 

  • Jessell T. M. and Iversen L. L. (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268, 549–551.

    PubMed  CAS  Google Scholar 

  • Johansson O., Hokfelt T., and Elde R P. (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13, 265–339.

    PubMed  CAS  Google Scholar 

  • Jolles J., van Dongen C. J., tenHaaf J., and Gispen W. N. (1982) Polyphosphoinositide metabolism in rat brain Effects of neuropeptides, neurotransmitters and cyclic nucleotides. Peptides 3, 709–714

    PubMed  CAS  Google Scholar 

  • Kebabian J. W. and Nathanson J. H., eds. (1982) Handbook of Experimental Pharmacology 58/11. Springer Verlag, Berlin.

    Google Scholar 

  • Kendall D. A. and Nahorski S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices. II. Calcium requirement. J. Neurochem. 42, 1388–1394.

    PubMed  CAS  Google Scholar 

  • Kennett R. H., McKearn T. J., and Bechtol K. B., eds (1980) Monoclonal antibodies, Hybridomas: A New Dimension in Biological Analyses Plenum, New York.

    Google Scholar 

  • Kerins C. and Said S. I. (1973) Hyperglycemic and glycogenolytic effects of vasoactive intestinal polypeptide. Proc Soc Exp Biol. Med 142, 1012–1014

    Google Scholar 

  • Kimhi Y. (1981) Clonal Systems, in Excitable Cells in Tissue Culture (Nelson P. G. and Lieberman M., eds.), Plenum, New York.

    Google Scholar 

  • Krejs G. J., Barkley R. M., Read N W., and Fordtran J. S (1978) Intestinal secretion induced by vasoactive intestinal polypeptide. J. Clin. Invest 61, 1337–1345.

    PubMed  CAS  Google Scholar 

  • Krieger D. T. (1983) Brain peptides. What, where and why? Science 222, 975–985.

    PubMed  CAS  Google Scholar 

  • Krieger D. T. and Martin J. B. (1981a) I. Brain peptides. New Engl. J. Med. 304, 876–885.

    PubMed  CAS  Google Scholar 

  • Krieger D.T. and Martin J. B (1981b) II. Brain peptides New Engl J Med. 304, 944–951.

    PubMed  CAS  Google Scholar 

  • Krieger D. T., Brownstein M. J., and Martin J. B, (1983) Brain Peptides. John Wiley, New York.

    Google Scholar 

  • Kriegstein A. R. and Dichter M. A. (1983) Morphological classification of rat cortical neurons in cell culture. J. Neurosci. 3, 1634–1647.

    PubMed  CAS  Google Scholar 

  • Langer S. Z. (1977) Presynaptic receptors and then role in the regulation of transmitter release Br. J. Pharmacol 60, 481–497.

    PubMed  CAS  Google Scholar 

  • Larsson L. I. and Rehfeld J. F (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 165, 201–218.

    PubMed  CAS  Google Scholar 

  • Larsson L. I., Fahrenkrug J., and Schaffalitzky de Muckadell O. B. (1977) Vasoactive intestinal polypeptide occurs in nerves of the female genitourmary tract. Science 197, 1374–1375.

    PubMed  CAS  Google Scholar 

  • Larsson L. I. Fahrenkrug J., Holst J. J., and Schaffalitzky de Muckadell O. B. (1978) Innervation of the pancreas by vasoactive intestinal polypeptide (VIP) immunoreactive nerves. Life Sci. 22, 773–780.

    PubMed  CAS  Google Scholar 

  • LeBaron F. N. (1955) The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochemistry 61, 80–85.

    CAS  Google Scholar 

  • Lehninger A. L, ed. (1982) Principles of Biochemisty. Worth, New York.

    Google Scholar 

  • Li C. L. and McIlwain H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol. 139, 178–190.

    PubMed  CAS  Google Scholar 

  • Lorén I, Emson P C., Fahrenkrug J., Bjarklund A., Alumets J., Hakanson R., and Sundler F (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4, 1953–1976.

    PubMed  Google Scholar 

  • Lowry O. H. and Passonneau J. V. (1964) The relationship between substrates and enzymes of glycolysis in brain. J Biol. Chem. 239, 31–42.

    PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L, and Randall R. J. (1951) Protein measurements with the folin phenol reagent. J, Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  • Magistretti P. J. and Morrison J. H. (1985) VIP neurons in the neocortex. Trends Neurosci 8, 7–8.

    CAS  Google Scholar 

  • Magistretti P. J. and Schorderet M (1984) VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Nature 308, 280–282

    PubMed  CAS  Google Scholar 

  • Magistretti P. J. and Schorderet M. (1985) Norepinephrine and histamine potentiate the increases in cyclic adenosine 3′:5′-monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: mediation by α1-adrenergic and H1-histaminergic receptors. J Neuroscience 5, 362–368.

    CAS  Google Scholar 

  • Magistretti P. J., Morrison J H., Shoemaker W. J., Sapin V,and Bloom F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices. A possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad. Sci. USA 78, 6535–6539.

    PubMed  CAS  Google Scholar 

  • Magistretti P. J., Manthorpe M., Bloom F. E., and Varon S. (1983a) Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain Regul. Pept. 6, 71–80.

    PubMed  CAS  Google Scholar 

  • Magistretti P. J, Morrison J. H., Shoemaker W. J., and Bloom F. E. (1983b) Effect of 6-hydroxydopamine lesions on norepinephrine-induced 3H-glycogen hydrolysis in mouse cortical slices. Brain Res. 261, 159–162.

    PubMed  CAS  Google Scholar 

  • Magistretti P. J., Hof P., and Schorderet M. (1984a) The increase in cyclic-AMP levels elicited by vasoactive intestinal peptide (VIP) in mouse cerebral cortical slices is potentiated by ergot alkaloids. Neurochem. Int. 6, 751–753.

    PubMed  CAS  Google Scholar 

  • Magistretti P. J., Morrison J. H., Shoemaker W. J., and Bloom F. E (1984b) Morphological and functional correlates of VIP neurons in cerebral cortex. Peptides 5, 213–218

    PubMed  CAS  Google Scholar 

  • Majerus P W., Wilson D. B., Connolly T M., Bross T. E., and Neufeld E. J. (1985) Phosphoinositide turnover provides a link in stimulus-response coupling. Trends Biochem. Sci 10, 168–171.

    CAS  Google Scholar 

  • Malmfors T. and Thoenen H., eds. (1971) 6-Hydroxydopamine and Catecholamine Neurons Elsevier, Amsterdam.

    Google Scholar 

  • Manthorpe M., Adler R., and Varon S. (1979) Development, reactivity and GFA immunofluorescence of astroglia-containing monolayer cultures from rat cerebrum. J. Neurocytol. 8, 605–621.

    PubMed  CAS  Google Scholar 

  • Markstein R. and Hokfelt T. (1984) Effect of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus. J. Neurosci. 4, 570–575.

    PubMed  CAS  Google Scholar 

  • Masters S. B., Harden T K., and Brown J. H. (1984) Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells. Mol. Pharmacol. 26, 149–155.

    PubMed  CAS  Google Scholar 

  • Matsuzaki Y., Hamasaki Y, and Said S. I. (1980) Vasoactive intestinal peptide: A possible transmitter of noradrenergic relaxation of guinea pig airways. Science 210, 1252–1253.

    PubMed  CAS  Google Scholar 

  • McDonald J. K., Parnavelas J. G., Karamanlidis A. N., and Brecha N. (1982) The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. II. Vasoactive intestinal polypeptide. J. Neurocytol. 11, 825–837.

    PubMed  CAS  Google Scholar 

  • McIlwain H. (1951) Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J. 49, 382–393.

    PubMed  CAS  Google Scholar 

  • McIlwain H. (1952) Phosphates and nucleotides of the central nervous system. Biochem Soc Symp 8, 27–43.

    Google Scholar 

  • McIlwain H. (1953) Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues J Neurol. Neurosurg. Psychiatry 16, 257–266.

    PubMed  CAS  Google Scholar 

  • McIlwain H. (1984) Introduction Cerebral Subsystems as Biological Entities, in Brain Slices (Dingledine R., ed), Plenum, New York.

    Google Scholar 

  • McIlwain H. and Tresize M. A. (1956) The glucose, glycogen and aerobic glycolysis of isolated cerebral tissues Biochem. J 63, 250–257.

    PubMed  CAS  Google Scholar 

  • McIlwain H., Ayres P. J. W., and Forda O. (1952) Metabolic response to electrical stimulation in separated portions of human cerebral tissues. J. Met. Sci. 98, 265–272.

    CAS  Google Scholar 

  • Meyer D. K. and Krauss J (1983) Dopamine modulates cholecystokinin release in neostriatum. Nature 301, 338–340.

    PubMed  CAS  Google Scholar 

  • Morrison J. H. and Magistretti P. J. (1983) Monoamines and peptides in cerebral cortex. Trends Neurosci. 6, 146–151.

    CAS  Google Scholar 

  • Morrison J. H., Grzanna R., Molliver M., and Coyle J. T. (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study. J. Comp. Neurol. 181, 17–40.

    PubMed  CAS  Google Scholar 

  • Morrison J. H., Molliver M. E., Grzanna R., and Coyle J. T. (1981) The intra-cortical trajectory of the coeruleo-cortical projection in the rat: A tangentially organized cortical afferent. Neuroscience 6, 139–158.

    PubMed  CAS  Google Scholar 

  • Morrison J. H., Benoit R., Magistretti P J., and Bloom F. E. (1983) Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex. Brain Res 262, 344–351.

    PubMed  CAS  Google Scholar 

  • Morrison J. H., Magistretti P. J, Benoit R., and Bloom F. E. (1984) The distribution and morphological characteristics of the intracortical VIP-positive cell An immunohistochemical analysis Brain Res 292, 269–282.

    PubMed  CAS  Google Scholar 

  • Nahorski S. R. and Rogers K. J. (1972) An enzymatic fluorometric micro-method for determination of glycogen. Anal. Biochem. 49, 492–497.

    PubMed  CAS  Google Scholar 

  • Nahorski S. R. and Rogers K. J. (1975) The role of catecholamines in the action of amphetamine and L-dopa on cerebral energy metabolism. Neuropharmacol 14, 283–290.

    CAS  Google Scholar 

  • Nahorski S. R., Rogers K. J., and Edwards C. (1975) Cerebralglycogenolysis and stimulation of α-adreno-receptors and histamine H2 receptors. Brain Res 92, 529–533.

    PubMed  CAS  Google Scholar 

  • Nathanson J. A. (1977) Cyclic nucleotides and nervous system function. Physiol. Rev. 57, 157–256.

    PubMed  CAS  Google Scholar 

  • Nathanson J. A (1981) Cellular Interactions of Biogenic Amines, Peptides, and Cyclic Nucleotides, in Neurosecretion and Brain Peptides (Martin J. B., Reichlin S., and Bick K. L., eds.), Raven, New Yo

    Google Scholar 

  • Navone F., Greengard P., and De Camilli P. (1984) Synapsin I in nerve terminals: Selective association with small synaptic vesicles. Science 226, 1209–1211.

    PubMed  CAS  Google Scholar 

  • Nelson S. R., Schulz D. W., Passonneau J. V., and Lowry O. H. (1968) Control of glycogen levels in brain. J. Neurochem. 15, 1271–1279.

    PubMed  CAS  Google Scholar 

  • Nestler E. J. and Greengard P. (1980) Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion. Proc. Natl. Acad. Sci. USA 77, 7479–7483.

    PubMed  CAS  Google Scholar 

  • Nestler E. J. and Greengard P. (1983) Protein phosphorylation in the brain. Nature 305, 583–588.

    PubMed  CAS  Google Scholar 

  • Nicholls J. G. and Wolfe D. E. (1967) Distribution of 14C-labelled sucrose, insulin, and dextran in extracellular spaces and in cells of the leech central nervous system. J. Neurophysiol. 30, 1574–1592.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1984a) Protein kinases in signal transduction. Trends Biochem. Sci 9, 163–166.

    Google Scholar 

  • Nishizuka Y. (1984b) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308, 693–698.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1984c) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.

    PubMed  CAS  Google Scholar 

  • Norton W. T. and Poduslo S. E. (1970) Neuronal soma and whole neuroglia of rat brain: A new isolation technique. Science 167, 1143–1145.

    Google Scholar 

  • Norton W. T., Farooq M., Fields K. L., and Raine C S. (1983) The long term culture of bulk-isolated bovine oligodendroglia from adult brain. Brain Res. 270, 295–310.

    PubMed  CAS  Google Scholar 

  • O'Doherty J., Youmans S. J., Mc.Armstrong W, and Stark R. J. (1980) Calcium regulation during stimulus-secretion coupling continuous measurement of intracellular calcium activities. Science 209, 510–513.

    PubMed  Google Scholar 

  • Ouimet C. C., McGuinness T. L., and Greengard P. (1984a) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl. Acad. Sci USA 81, 5604–5608.

    PubMed  CAS  Google Scholar 

  • Ouimet C. C, Miller P. E., Hemmings, Jr., H. C, Walaas S. I., and Greengard P. (1984b) DARPP-32, a dopamine-and adenosine 3′.5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124.

    PubMed  CAS  Google Scholar 

  • Park C. R. and Exton J. H. (1973) Glucagon and the Metabolism of Glucose, in Glucagon Molecular Physiology, Clinical and Therapeutic Implications (Lefebvre P. J. and Unger R. H., eds.), Pergamon, New Yo

    Google Scholar 

  • Passonneau J. V., Brunner E. A., Molstad C., and Passonneau R. (1971) The effects of altered endocrine states and of ether anesthesia on mouse brain. J. Neurochem. 18, 2317–2328.

    PubMed  CAS  Google Scholar 

  • Peikin S. R., Rottman A. J., Batzri S., and Gardner J, D. (1978) VIP effects on exocrine pancreas. Am J Physiol. 235, E743–E749.

    PubMed  CAS  Google Scholar 

  • Peters A., Miller M., and Kimerer L. M. (1983) Cholecystokinin-like immunoreactive neurons in rat cerebral cortex. Neuroscience 8, 431–448.

    PubMed  CAS  Google Scholar 

  • Petersen O. H. and Maruyama Y. (1984) Calcium-activated potassium channels and their role in secretion. Nature 307, 693–696.

    PubMed  CAS  Google Scholar 

  • Piper P. J., Said S. I., and Vane J. R (1970) Effects of smooth muscle preparations of unidentified vasoactive peptides from intestine and lung. Nature 225, 1144–1145.

    PubMed  CAS  Google Scholar 

  • Poduslo S. E. and Norton W. T. (1972) Isolation and some chemical properties of oligodendroglia from calf brain. J. Neurochem. 19, 727–736.

    PubMed  CAS  Google Scholar 

  • Powell T. P. S. (1981) Certain Aspects of the Intrinsic Organisation of the Cerebral Cortex, in Brain Mechanisms and Perceptual Awareness (Pompeiano O. and Ajmone Marsan C., eds.), Raven, New York.

    Google Scholar 

  • Pralong W. F., Jirounek P., and Straub R. W. (1984) Free calcium in mammalian nerve axons measured by quin-2. Neurosci. Lett. (suppl. 18) S338.

    Google Scholar 

  • Prpić V., Blackmore P. F., and Exton J. H. (1982) Phosphatidylinositol breakdown induced by vasopressin and epmephrine in hepatocytes is calcium-dependent J. Biol. Chem. 257, 11323–11331.

    PubMed  Google Scholar 

  • QuachT. T., Rose C., and Schwartz J. C. (1978) (3H)-Glycogen hydrolysis in brain slices. Responses to neurotransmitters and modulation of noradrenaline receptors. J Neurochem. 30, 1335–1341.

    Google Scholar 

  • Quach T. T., Duchemin A. M., Rose C., and Schwartz J. C. (1980) (3H)-Glycogen hydrolysis elicited by histamine in mouse brain slices. Selective involvement of H1-receptors. Mol. Pharmacol. 17, 301–308.

    PubMed  CAS  Google Scholar 

  • Quach T T., Rose C., Duchemin A. M., and Schwartz J. C. (1982) Glycogenolysis induced by serotonin in brain: Identification of a new class of receptor. Nature 298, 373–375.

    PubMed  CAS  Google Scholar 

  • Quik M., Iversen L. L, and Bloom S. R. (1978) Effect of vasoactive intestinal peptide (VIP) and other peptides on CAMP accumulation in rat brain. Biochem. Pharmacol. 27, 2209–2213.

    PubMed  CAS  Google Scholar 

  • Raine C. S., Poduslo S. E., and Norton W. T. (1971) The ultrastructure of purified preparations of neurons and glial cells. Brain Res 27, 11–24

    PubMed  CAS  Google Scholar 

  • Rall T. W. and Sutherland E. W. (1958) Formation of cyclic adenine ribonucleotide by tissue particles. J. Biol. Chem. 232, 1065–1076.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S. (1911) Histologie du système nerveux de l'homme et des vertébrés vol 2, Azoulay L., transl. Maloine, Paris, 1911.

    Google Scholar 

  • Ramón y Cajal S. (1954) Neuron theory or reticular theory? Objective evidence of the anatomical unity of nerve cells. English translation, Consejo Superior de Investigaciones Scientificas, Instituto Ramón y Cajal, Madrid, by Ubeda Purkiss M. and Fox C. A.

    Google Scholar 

  • Rasmussen H. and Barrett P. Q. (1984) Calcium messenger system: An integrated view. Physiol. Rev. 64, 938–984.

    PubMed  CAS  Google Scholar 

  • Redgate E S., Deupree J. D., and Axelrod J. (1986) Interaction of neuropeptides and biogenic amines on cyclic adenosine monophosphate accumulation in hypothalamic nuclei Brain Res 365, 61–69

    PubMed  CAS  Google Scholar 

  • Rehfeld J. F. (1980) Cholecystokinin. Trends Neurosci. 3, 65–67.

    CAS  Google Scholar 

  • Rehfeld J. F. (1978) Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J. Biol. Chem. 253, 4022–4030.

    PubMed  CAS  Google Scholar 

  • Renaud L. P, Pittman Q J., Blume H W, Lamour Y., and Arnauld E. (1979) Effects of Peptides on Central Neuronal Excitability, in Central Nervous System Effects of Hypothalamic Hormones and other Peptides (Collu R., Barbeau A., and Ducharme J. R., eds.), Raven, New York.

    Google Scholar 

  • Reubi J C., Emson P. C., Jessell T. M., and Iversen L. L. (1978) Effects of GABA, dopamine and substance P on the release of newly synthesized 3H-5-HT from rat substantia nigra in vitro. Naunyn Schmiedeberg’s Arch Pharmacol. 304, 271–275.

    CAS  Google Scholar 

  • Rivier J., Spiess J., Thorner M., and Vale W. (1982) Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300, 276–278.

    PubMed  CAS  Google Scholar 

  • Rivier J., Spiess J., and Vale W. (1983) Characterization of rat hypothalamic corticotropin-releasing factor. Proc. Natl. Acad. Sci. USA 80, 4851–4855.

    PubMed  CAS  Google Scholar 

  • Robberecht P, Waelbroeck M, Dehaye J.-P., Winand J., Vandermeers A, Vandermeers-Piret M-C, and Christophe J. (1984) Evidence that helodermin, a newly extracted peptide from Gila monster venom, is a member of the secretin/VIP/PHI family of peptides with an orignal pattern of biological properties. FEBS Lett. 166, 277–282.

    PubMed  CAS  Google Scholar 

  • Robison G. A., Schmidt M. J., and Sutherland E. W (1970) On the Development and Properties of the Brain Adenyl Cyclase System, in Role of Cyclic AMP in Cell Functions, Advances in Biochemical Psychopharmacology vol. 3 (Greengard P. and Costa A., eds.), Raven, New York.

    Google Scholar 

  • Rodnight R. (1982) Aspects of Protein Phosphorylation in the Nervous System with Particular Reference to Synaptic Transmission, in Brain Phosphoproteins Characterization and Function Progress in Brain Research vol. 56 (Gispen W. H and Routtenberg A, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Rose S P. R. and Sinha A. K. (1969) Some properties of isolated neuronal cell fractions. J, Neurochem 16, 1319–1328.

    CAS  Google Scholar 

  • Roth B. L., Beinfeld M. C., and Howlett A. C. (1984) Secretin receptors on neuroblastoma cell membranes CharacterizatIon of 125I-labeled secretin binding and association with adenylate cyclase. J Neurochem 42, 1145–1152.

    PubMed  CAS  Google Scholar 

  • Said S. I, ed. (1982) Advances in Peptide Hormone Research Series, Vasoactive Intestinal Peptide. Raven, New York

    Google Scholar 

  • Said S. I and Mutt V. (1970a) Potent peripheral and splanchic vasodilator peptide from normal gut Nature 225, 863–864

    PubMed  CAS  Google Scholar 

  • Said S. I. and Mutt V (1970b) Polypeptide with broad biological activity. Isolation from small intestine. Science 169, 1217–1218

    PubMed  CAS  Google Scholar 

  • Schaeffer J. M., Schmeckel D. E., Conn P. M., and Brownstein M. J. (1980) A simple and rapid method to isolate rat retinal cells for biochemical analysis. Neuropeptides 1, 39–45.

    Google Scholar 

  • Schally A. V., Arimura A., Baba Y, Nair R. M. G., Matsuo H, Redding T W., and Debeljuk L. (1971) Isolation and properties of the FSH and LH-releasing hormone Biochem Biophys Res Commun 43, 393–399.

    PubMed  CAS  Google Scholar 

  • Schebalin M., Said S. I., and Makhlouf G M (1977) Stimulation of insulin and glucagon secretion by vasoactive intestinal peptide. Am. J. Physio1. 232, E197–E200.

    CAS  Google Scholar 

  • Schlegel W. and Wollheim C. B. (1984) Thyrotropin-releasing hormone increases cytosolic free Ca2+ in clonal pituitary cells (GH3 cells). Direct evidence for the mobilization of cellular calcium. J. Cell Biol. 99, 83–87.

    PubMed  CAS  Google Scholar 

  • Schlegel W., Wuarin F., Wollheim C. B., and Zahnd G. R. (1984) Somatostatin lowers the cytosolic free Ca2+ concentration in clonal rat pituitary cells (GH3 cells). Cell Calcium 5, 223–236.

    PubMed  CAS  Google Scholar 

  • Schorderet M., Sovilla J. Y., and Magistretti P. J. (1981) VIP-and glucagon-induced formation of cyclic AMP in intact retinae in vitro. Eur. J Pharmacol. 71, 131–133

    PubMed  CAS  Google Scholar 

  • Sellinger O. Z. and Azcurra J. M. (1974) Bulk Separation of Neuronal Cell Bodies and Ghal Cells in the Absence of Added Digestive Enzymes, in Research Methods in Neurochemistry vol. II (Marks N and Rodnight R., eds.), Plenum, New York.

    Google Scholar 

  • Siegel G. J., Albers R. W., Agranoff B. W., and Katzman R., eds. (1981) Basic Neurochemistry. Little, Brown, Boston.

    Google Scholar 

  • Siggins G. R. (1981) Catecholamines and Endorphins as Neurotransmitters and Neuromodulators, in Regulatory Mechanisms of Synaptic Transmission (Tapia R. and Cotman C. W., eds.), Plenum, New York.

    Google Scholar 

  • Siggins G. R. and Bloom F. E. (1981) Modulation of Unit Activity by Chemically Coded Neurons, in Brain Mechanisms and Perceptual Awareness (Pompeiano O and Ajmone Marsan C., eds.), Raven, New York.

    Google Scholar 

  • Siman R., Baudry M., and Lynch G. (1984) Brain fodrin: Substrate for calpain I, an endogenous calcium-activated protease. Proc. Natl. Acad. Sci. USA 81, 3572–3576.

    PubMed  CAS  Google Scholar 

  • Sladeczek F., Pin J.-P., Récasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates mositol phosphate formation in striatal neurones. Nature 317, 717–719.

    PubMed  CAS  Google Scholar 

  • Smellie F. W., Davis C. W., Daly J. W., and Wells J. N. (1979) Alkylxanthines: Inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci 24, 2475–2482.

    PubMed  CAS  Google Scholar 

  • Smitherman T. C., Sakio H., Geumei A. M., Yoshida T., Oyamada M., and Said S. I. (1982) Coronary Vasodilator Action of VIP, in Vasoactive Intestinal Peptide (Said S. I., ed.), Raven, New York.

    Google Scholar 

  • Snyder S. H. (1980) Brain peptides as neurotransmitters. Science 209, 976–983.

    PubMed  CAS  Google Scholar 

  • Snyder D. S., Zimmerman,Jr., T. R., Farooq M., Norton W. T., and Cammer W (1983) Carbonic anhydrase, 5′-nucleotidase, and 2′,3′-cyclic nucleotide-3′-phosphodiesterase activities in oligodendrocytes, astrocytes, and neurons isolated from the brains of developing rats. J. Neurochem. 40, 120–127.

    PubMed  CAS  Google Scholar 

  • SØlling H. and Esmann V. (1975) A sensitive method of glycogen determination in the presence of interfering substances utilizing the filter-paper technique Anal Biochem 68, 664–668.

    PubMed  Google Scholar 

  • Sotelo C. and Palay S. L (1968) The fine structure of the lateral vestibular nucleus in the rat. I Neurons and neuroglial cells J Cell. Biol 36, 151–179.

    Google Scholar 

  • Spiess J., Rivier J., and Vale W (1983) Characterization of rat hypothalamic growth hormone-releasing factor Nature 303, 532–535.

    PubMed  CAS  Google Scholar 

  • Starke K. (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem 77, 1–124.

    CAS  Google Scholar 

  • Staun-Olsen P., Ottesen B., Bartels P. D., Nielsen M. H., Gammeltoft S., and Fahrenkrug J. (1982) Receptors for vasoactive intestinal polypeptide on isolated synaptosomes from rat cerebral cortex. Heterogeneity of binding and desensitization of receptors. J. Neurochem. 39, 1242–1251.

    PubMed  CAS  Google Scholar 

  • Steiner A. L., Pagliera A. S., Chase L. R, and Kipnis D M (1972) Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J Biol Chem. 247, 1114–1120.

    PubMed  CAS  Google Scholar 

  • Sutherland E. W. and Robison G. A. (1966) The role of cyclic 3′,5′-AMP in responses to catecholamines and other hormones. Pharmacol. Rev. 18, 145–161.

    PubMed  CAS  Google Scholar 

  • Sutherland E. W., Rail T. W., and Menon T. (1962) Adenyl cyclase. I. Distribution, preparation and properties. J. Biol. Chem 237, 1220–1227.

    PubMed  CAS  Google Scholar 

  • Taylor D. P. and Pert C B (1979) Vasoactive intestinal polypeptide: Specific binding to rat brain membranes. Proc Natl. Acad. Sci. USA 76, 660–664.

    PubMed  CAS  Google Scholar 

  • Thulin L. and Samnegard H. (1978) Circulatory effect of gastrointestinal hormone and related peptides Acta Chir Scand. 482, 73–74

    CAS  Google Scholar 

  • Trachtenberg M C and Packey D. J. (1983) Rapid isolation of mammalian Muller cells Brain Res. 261, 43–52.

    PubMed  CAS  Google Scholar 

  • Tsien R Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons Design, synthesis and properties of prototype structures. Biochemistry 19, 2396–2404

    PubMed  CAS  Google Scholar 

  • Tsien R. Y., Pozzan T,and Rink T. J. (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellular trapped fluorescent indicator J Cell Biol 94, 325–334

    PubMed  CAS  Google Scholar 

  • Tsien R. Y., Pozzan T., and Rink T. J. (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem. Sci. 9, 263–265.

    CAS  Google Scholar 

  • Uhl G R. and Snyder S. H. (1976) Regional and subcellular distributions of brain neurotensin Life Sci. 19, 1827–1832

    PubMed  CAS  Google Scholar 

  • Vale W., Spiess J., Rivier C., and Rivier J. (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397.

    PubMed  CAS  Google Scholar 

  • Van Buskirk R. and Dowling J E. (1981) Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. Proc Natl. Acad Sci USA 78, 7825–7829.

    PubMed  Google Scholar 

  • van Calker D., Muller M, and Hamprecht B. (1980) Regulation by secretin, vasoactive intestinal peptide and somatostatin of cyclic AMP accumulation in cultured brain cells. Proc. Nat1 Acad. Sci. USA 77, 6907–6911.

    Google Scholar 

  • Walaas S.I. and Greengard P (1984) DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distnbution in the rat brain J Neurosci 4, 84–98.

    PubMed  CAS  Google Scholar 

  • Wei E P., Kontos H. A, and Said S I. (1980) Mechanism of action of vasoactive intestinal polypeptide on cerebral arterioles.Am J Physiol 239, H765–H768.

    PubMed  CAS  Google Scholar 

  • White E. L. (1981) Thalamocortical Synaptic Relations, in The Organization of the Cerebral Cortex (Schmitt F.O., Worden F. G., Adelman G, and Dennis S G, eds.), MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Wilkening D. and Makman M. H (1976) Stimulation of glycogenolysis in rat caudate nucleus slices by l-isopropylnorepinephrine, dibutyryl cyclic AMP and 2-chloroadenosine. J. Neurochem. 26, 923–928

    PubMed  CAS  Google Scholar 

  • Wilkening D and Makman M. H. (1977) Activation of glycogen phos-phorylase in rat caudate nucleus slices by l-isopropylnorepinephrine and dibutyryl cyclic AMP. J. Neurochem. 28, 1001–1007.

    PubMed  CAS  Google Scholar 

  • Wolfe D. E. and Nicholls J. G (1967) Uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the leech central nervous system J, Neurophysiol. 30, 1593–1609.

    CAS  Google Scholar 

  • Wollheim C B. and Pozzan T. (1984) Correlation between cytosolic free Ca2+ and insulin release in an insulin secreting cell line. J. Biol. Chem. 259, 2262–2267.

    PubMed  CAS  Google Scholar 

  • Wood C. L. and Blum J. J. (1982) Effect of vasoactive intestinal polypeptide on glycogen metabolism in rat hepatocytes. Am J, Physiol 242, E262–E272.

    CAS  Google Scholar 

  • Zieglgansberger W. (1980) Peptides in the Regulation of Neuronal Function, in Peptides: Integrators of Cell and Tissue Function (Bloom F. E, ed), Raven, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this protocol

Cite this protocol

Magistretti, P.J. (1987). Biochemical Approaches to the Study of Peptide Actions. In: Boulton, A.A., Baker, G.B., Pittman, Q.J. (eds) Peptides. Neuromethods, vol 6. Humana Press. https://doi.org/10.1385/0-89603-105-5:245

Download citation

  • DOI: https://doi.org/10.1385/0-89603-105-5:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-105-0

  • Online ISBN: 978-1-59259-611-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics