Skip to main content

Proteinases and Peptidases

  • Protocol
Book cover Neurotransmitter Enzymes

Part of the book series: Neuromethods ((NM,volume 5))

  • 4338 Accesses

Abstract

Protein turnover in the brain proceeds at a high rate in all developmental stages. This high activity indicates that not only protein synthesis but also protein degradation occurs at high rates. Information IS available about the rate, mechanism, and regulatory factors of protein synthesis m the nervous system, but comparable knowledge on protein breakdown is not yet available (Marks and Lajtha, 1971; Hui and Lajtha, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almenoff J., Wilk S., and Orlowski M. (1981) Membrane-bound pituitary metalloendopeptidase: Apparent identity to enkephalmase. Biochem Biophys. Res. Commun 102, 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Aoki Y., Urata G., Takatsia F., and Katunuma N. (1975) A new protease mactivating a-aminolevulinic acid synthetase in mitochondria of human bone marrow cells. Biochem. Biophys. Res. Commun. 65, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi T. (1978) Structure and Activities of Protemase Inhibitors of Microbial Origin, in Bioactive Peptides Produced by Microorganisms (Umezawa H., Takita T., and Shiba T., eds.), Kodansha, Tokyo.

    Google Scholar 

  • Arregui A., MacKay A. V. P., Iversen L L., and Spokes E. G (1979) Reduction of angiotensin-converting enzyme in substantia nigra in early-onset schizophrenia. N Engl J. Med. 30, 502–503

    Google Scholar 

  • Arregui A., MacKay A. V. P, Spokes E. G., and Iversen L. L. (1980) Reduced activity of angiotensin-converting enzyme in basal ganglia in early onset schizophrenia. Psychol Med. 10, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Arstila A. V, Reikkinen P. J, Rinne U. K., Pellinieme T. T, and Nevalamen T. (1971) Guillain-Barre syndrome. Neurochemical and ultrastructural study. Eur. Neurol. 5, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Barrett A. J., Elisabeth Davies M, and Grubb A. (1984) The place of human β-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem. Biophys. Res. Commun. 120, 631–636.

    Article  PubMed  CAS  Google Scholar 

  • Benson J. R. and Hare, H. E (1975) o-Phthaldialdehyde fluorogenic detection of primary amines in the picomole range comparison with fluorescamine and ninhydrin. Proc Natl. Acad. Sci. USA 72, 619–622.

    Article  PubMed  CAS  Google Scholar 

  • Berg M. J. and Marks N. (1984) Formation of des Tyr dynorphms 5–17 by a purified cytosolic aminopeptidase of rat brain. J. Neurosci. Res. 11, 313–321

    Article  PubMed  CAS  Google Scholar 

  • Boehme D H, Umezawa H., Hashim G., and Marks N (1978) Treatment of experimental allergic encephalomyelitis with an inhibitor of cathepsin D (pepstatin). Neurochem. Res 3, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Bowen D M, Smith C. B, and Davison A. N (1973) Molecular changes in senile dementias. Brain 96, 849–856.

    Article  PubMed  CAS  Google Scholar 

  • Brosnan C. F., Cammer W, Norton W. T., and Bloom B. R (1980) Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis. Nature 285, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Burbach J. P H., De Kloet E. R, and De Wied D (1980) Oxytocin biotransformation in the rat limbic brain. Characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Res. 202, 401–414.

    Article  PubMed  CAS  Google Scholar 

  • Burzynski S. R. (1975) Quantitative analysis of amino acids and peptides in the femtomolar range. Anal. Biochem. 65, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Byers L D. and Wolfenden R. (1973) Binding of the by-product analog benzylsuccinic acid by carboxypeptidase A. Biochemistry 12, 2070–2078

    Article  PubMed  CAS  Google Scholar 

  • Carmago A. C. M., Shapanka R., and Greene L. J. (1973) Preparation, assay and partial characterizatin of a neutral endopeptidase from rabbit brain. Biochemistry 12, 1838–1844.

    Article  Google Scholar 

  • Chan W. W. C. (1983) Leucinthlol—a potent inhibitor of leucine aminopepudase. Biochem. Biophys. Res. Commun. 116, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Chan W. W. C., Dennis P., Demmer W., and Brand K. (1982) Inhibition of leucine aminopeptidase by amino acid hydroxamates. J. Biol Chem. 257, 7955–7957.

    PubMed  CAS  Google Scholar 

  • Chelmicka-Schorr E. E., Arnason B. E. W., Astrom K.-E., and Darzynkiewicz Z. (1978) Treatment of mouse muscular dystrophy with the protease inhibitor pepstatm. J. Neuropathol. Exp. Neurol. 37, 263–268.

    Article  Google Scholar 

  • Cushman D. W., Cheng H. S., Sabo E. F., and Ondetti M. A. (1977) Design of potent competitive inhibitors of angiotensin-converting Enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16, 5484–5491.

    Article  PubMed  CAS  Google Scholar 

  • Dean D. D and Woessner F., Jr. (1984) Extracts of human articular cartilage contain an inhibitor of tissue metalloproteinases. Biochem. J. 218, 277–280.

    PubMed  CAS  Google Scholar 

  • De La Baume S., Yi C. C., Schwartz J. C., Chaillet P., Marcais-Collado H., and Costentin J. (1983) Participation of both “enkephalinase” and aminopeptidase activities in the metabolism of endogenous enkephalins. Neuroscience 8, 143–151.

    Article  PubMed  Google Scholar 

  • Devi L. and Goldstein A. (1984) Dynorphin converting enzyme with unusual specificity from rat brain. Proc. Natl. Acad. Sci. USA 81, 1892–1896.

    Article  PubMed  CAS  Google Scholar 

  • Einstein E. R., Csejtey J., Dalal K. B., Adams C. W. M., Bayliss O. B., and Hallpike J. F. (1972) Proteolytic activity and basic protein loss in and around multiple sclerosis plaques. Combined biochemical and histochemical observations. J. Neurochem. 12, 653–662.

    Article  Google Scholar 

  • Einstein E. R., Dalal K. B., and Csejtey J. (1970) Increased protease activity and changes in basic proteins and lipids in multiple sclerosis plaques. J Neurol. Sci 11, 109–121.

    Article  PubMed  CAS  Google Scholar 

  • Erlanger B. F., Kokowsky N., and Cohen W. (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys 95, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein G., Kupfer A, and Sokolovsky M. (1973) N-Acetyl-(l-Ala) 3-p-nitroanilide as a new chromogenic substrate for elastase. Biochem. Biophys. Res. Commun. 50, 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  • Fricker L. D. and Snyder S H. (1982) Enkephalin convertase: Purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc Natl Acad. Sci. USA 79, 3886–3890.

    Article  PubMed  CAS  Google Scholar 

  • Fruton J. S. (1960) Cathepsins, in The Enzymes 2nd Ed. (Boyer P. D., Lardy H., and Myrback K., eds.), Academic, New York.

    Google Scholar 

  • Gráf L., Cseh G, Barát E, Ronai A., Székely J I., Kenessey A., and Balusz S. (1977) Structure-function relationship in lipotropins. Ann NY Acad. Sci 297, 63–83.

    Article  PubMed  Google Scholar 

  • Gráf L., Kenessey A, Bajusz S., Patthy A., Ronai A Z., and Berzétei I. (1979) Proteolytic Processing in the Biosynthesis and Metabolism of Endorphins, in Endorphin in Mental Health Research (Usdin W. E., Bunney J., and Kline N. S., eds.), MacMillan, New York.

    Google Scholar 

  • Green G D. J, Kembhavi A. A., Davies M. E., and Barrett A. J. (1984) Cystatin-like cysteine proteinase inhibitors from human liver. Biochem. J. 218, 939–946.

    PubMed  CAS  Google Scholar 

  • Hamilton P. B. (1963) Ion exchange chromatography of amino acids, a single column, high resolving, fully automatic procedure. Anal Chem. 35, 2055–2064

    Article  CAS  Google Scholar 

  • Hancock W. S., Bishop C. A., and Hearn M. T. W (1979) The analysis of nanogram levels of free amino acids by reverse-phase high-pressure liquid chromatography. Anal. Biochem. 92, 170–178.

    Article  PubMed  CAS  Google Scholar 

  • Hersh L. B. (1981) Solubilizahon and characterization of two rat brain membrane-bound aminopeptidases active on Met-enkephalin. Biochemtsty 20, 2345–23

    Article  CAS  Google Scholar 

  • Hersh L. B. (1985) Characterization of membrane-bound ammopepndases from rat brain. Identification of the enkephalm-degrading aminopeptidase. J Neurochem. 44, 1427–14

    Article  PubMed  CAS  Google Scholar 

  • Hill D. W., Walters F. H., Wilson T. D., and Stuart J. D. (1979) High performance liquid chromatographic determination of amino acids in the picomole range. Anal Chem 51, 1338–1341.

    Article  PubMed  CAS  Google Scholar 

  • Hui K.-S. and Lajtha A. (1978) Prolidase activity in the brain. Comparison with other organs. J Neurochem. 30, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Hui K.-S. and Lajtha A. (1983) Neuropeptides, in Handbook of Neurochemisty, 2ndEd,Vol 4, (Lajtha A.,Ed.), Plenum, New York and London.

    Google Scholar 

  • Hui K.-S., Cheng K.-P., Wong K.-H., Salshutz M., and Lajtha A. (1980a) Degradation of melanotropin inhibiting factor by bram. J Neurochem 35, 471–478.

    Google Scholar 

  • Hui K.-S., Salshutz M., Davis B. A., and Lajtha A. (1980b) Separation of alkylaminonaphthylenesulfonyl peptides and amino acids: Methods for measuring melanotropin inhibiting factor breakdown. J. Chromatogr 192, 341–350

    Article  PubMed  CAS  Google Scholar 

  • Hui K.-S., Gráf L., and Lajtha A. (1982) β-Endorphin inhibits Metenkephalin breakdown by a brain ammopeptidase: Structure-activity relationships. Biochem. Brophys. Res. Commun. 105, 1482–1487.

    Article  CAS  Google Scholar 

  • Hui K.-S., Hui M., Banay-Schwartz M., DeGuzman T., Ling N., and Lajtha A. (1983a) Enkephalin-containing polypeptides are potent inhibitors of enkephalin degradation. Peptides 4, 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Hui K-S., Wang Y.-J, and Lajtha A. (1983b) Purification and characterization of an enkephalin ammopeptidase from rat brain membrane. Blochemstry 22, 1062–1067

    Article  CAS  Google Scholar 

  • Hui K.-S., Wang Y.-J., Wong K.-H., Tsai H., and Lajtha A. (1981) Regional and subcellular distribution of Met-and Leu-enkephalin-degrading activity in rat brain. Neuropeptides 1, 167–173.

    Article  CAS  Google Scholar 

  • International Union of Biochemistry (1978) Recommendations of the nomenclature committee of the International Union of Biochemistry. Academic, New York

    Google Scholar 

  • Kellokumpu S., Vuolteenaho O., and Leppaluoto J. (1980) Behavior of rat hypothalamic and extrahypothalamic immunoreacuon TRF in thinlayer chromatography (TLC) and high pressure liquid chromatography (HPLC). Life Sci 26, 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J. A., Needle E. L., and Needle A. (1983) An aminopeptidase from mouse brain cytosol which cleaves N-terminal acidic amino acid residues. J. Neurochem. 40, 1727–1734.

    Google Scholar 

  • Kojima K., Hama T., Kato T., and Nagatsu T. (1980) Rapid chromatographic purification of dipeptidyl peptidase IV in human submaxillary gland. J. Chromatogr. 189, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Kominami E., Uakamatsa N., and Katunuma N. (1982) Purification and characterization of thiol proteinase inhibitor from rat liver. J. Biol. Chem. 257, 14648–14652.

    PubMed  CAS  Google Scholar 

  • Kopitar M., Stern F, and Marks N. (1983) Cerebrocystatin suppresses degradation of myelin basic protein by purified brain cysteine proteinase. Biochem Biophys Res. Commun. 112, 1000–1006.

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L., Rutschmann in, Dahlmann B., and Reinauer H. (1984) Protemase inhibitors in rat serum. Biochem J. 218, 953–959.

    Google Scholar 

  • Laskowski M., Jr. and Kato I. (1980) Protein inhibitors of proteinases. Ann. Rev Biochem. 49, 593–626

    Article  PubMed  CAS  Google Scholar 

  • Libby P. and Goldberg A. L. (1978) Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles Science 199, 534–536.

    Article  PubMed  CAS  Google Scholar 

  • Marks N. and Lajtha A. (1963) Protein breakdown in brain: Subcellular distribution of neural and acid proteinases. Biochem. J. 89, 438–477.

    PubMed  CAS  Google Scholar 

  • Marks N. and Lajtha A. (1971) Protein and Polypeptide Breakdown, in Handbook of Neurochemistry, Vol. V, Part A, (Lajtha A., ed ), Plenum, New York.

    Google Scholar 

  • Marks N., Berg M. J, Kastin A. J., and Coy D. H (1984) Evidence for conversion of N-Tyr-MIF-1 into MIF-1 by a specific brain aminopepudase. Neurochem. Int. 6, 347–353

    Article  PubMed  CAS  Google Scholar 

  • Marks N, Datta R. K., and Lajtha A. (1968) Partial resolution of brain arylamidases and aminopeptidases. J. Biol. Chem. 243, 2882–2889.

    PubMed  CAS  Google Scholar 

  • Nagase H. and Harris E. D., Jr. (1983) Ovostatin-A novel proteinase inhibitor from chicken egg white. J. Biol. Chem. 258, 7481–7489

    PubMed  CAS  Google Scholar 

  • Neidle A. and Lajtha A. (1976) The Substrate Specificity of an Aminopepudase (Neutral arylamidase) From Pig Brain, in Problems of Brain Biochemistry Vol. XI, (Buinatian H. Ch., ed ), Armenian Acad. Sci., Yerevan, CCCP.

    Google Scholar 

  • Neidle A., Yessaian N., and Lajtha A. (1980) Degradation of prolylleucyl-glycinamide (MIF) by mouse brain. Neurochem. Res. 5, 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  • Nishino N. and Powers J. C. (1980) Pseudomonas aeruginosa elastase; Development of a new substrate, inhibitors, and an affinity ligand. J Biol. Chem. 255, 3482–3486.

    PubMed  CAS  Google Scholar 

  • Nishizawa R, Saino T., Takita T., Suda H, Aoyagi T., and Umezawa H (1977) Synthesis and structure-activity relationships of bestatin analogues, inhibitors of ammopeptidase J. Med Chem. 20, 510–515.

    Article  PubMed  CAS  Google Scholar 

  • Ondetti M. A (1983) Biochemistry of the renin-angiotensin system. Introduction Fed Proc. 42, 2722–2723.

    PubMed  CAS  Google Scholar 

  • Orlowski M. (1983) Protemases, in Handbook of Neurochemistry, 2nd Ed., Vol. 4 (Lajtha A., Ed.), Plenum, New York

    Google Scholar 

  • Orlowski M., Orlowski J., Lesser M., and Kiburn K. H. (1981) Proteolytic enzymes in bronchopulmonary lavage fluids: Cathepsin B-like activity and prolyl endopeptidase. J. Lab. Clin. Invest. 97, 467–476.

    CAS  Google Scholar 

  • Orlowski M., Wilk E., Pearce S., and Wilk S. (1979) Purification and properties of a prolyl endopeptidase from rabbit brain. J Neurochem 33, 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Patchett A. A., Harris E, Tristram E W., Wyrratt M J., Wu M. T., Taub D., Paterson E R., Ikeler T. J., Ten Broeke J., Payne L. G., Ondeyka D. L., Thorsett E. D., Greenlee W. J., Lohr N. S., Hoffsommer R. D., Joshua H., Ruyle W. V., Rothrock J. W., Aster S. D., Maycock A. L., Robinson F. M., Hirschmann R., Sweet C S., UIm E. H., Gross D. M., Vassil T. C., and Stone C. A. (1980) A new class of angiotensin-converting enzyme inhibitors. Nature 288, 280–281.

    Article  PubMed  CAS  Google Scholar 

  • Patey G., De La Baume S., Schwartz J.-C., Gros C., Roques B., Fournie-Zaluski M.-C., and Soroca-Lucas E. (1981) Selective protection of methionine enkephalin released from brain slices by enkephalinase inhibition. Science 212, 1153–1155.

    Article  PubMed  CAS  Google Scholar 

  • Pinsky C., Dua A. K., and LaBella F. S. (1982) Peptidase inhibitors reduce opiate narcotic withdrawal signs, including seizure activity in the rat brain. Brain Res 243, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Pontremoli S., Melloni E., Salamino F., Sparatone B., Michett M., and Horecker B. L. (1983) Endogenous inhibitors of lysosomal protemases. Proc. Natl. Acud. Sci. USA 80, 1261–1264.

    Article  CAS  Google Scholar 

  • Pope A. (1968) Structural and Enzymatic Microchemistry of Human Cerebral Cortex, in The Central Nervous System (Bailey O. T. and Smith D. E., Ed.), Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Pope A. and Nixon R. A. (1984) Proteases of human brain. Neurochem. Res. 9, 291–323.

    Article  PubMed  CAS  Google Scholar 

  • Pope A., Hess H. H., and Lewin E. (1964) Studies on the Microchemical Pathology of Human Cerebral Cortex, in Morphological and Biochemical Correlates of Neural Activity (Cohen M. M. and Snider R. S., eds.), Hoeber-Harper, New York.

    Google Scholar 

  • Relth M. E. A. and Neidle A. (1979) The isolation of two dipeptide hydrolases from mouse brain cytosol. Biochem. Brophys. Res. Commun. 90, 794–800.

    Article  Google Scholar 

  • Relton J. M., Gee N. S., Matsas R., Turner A. J., and Kenny A. J. (1983) Purification of endopeptidase-24,11 (enkephalinase) from pig brain by immunoadsorbent chromatography. Biochem. J. 215, 519–523.

    PubMed  CAS  Google Scholar 

  • Roques B. P., Fournie-Zaluski M. C., Soroca E., Lecomte J. M., Malfroy B., Llorens C., and Schwartz J.-C (1980) The enkephalinase inhibitor throrphan shows antinocrceptrve activity in mice. Nature 288, 286–288.

    Article  PubMed  CAS  Google Scholar 

  • Sacks L. and Marks N. (1982) A highly specific aminotripeptidase of rat brain cytosol: Substrate specificity and effects of inhibrtors. Biochim. Biophys. Acta 706, 229–238.

    Article  Google Scholar 

  • Saito M., Aoyagi T, Umezawa H., and Nagai Y. (1977) Bestatin, A new specific inhibitor of ammopeptrdase, enhances achvation of small lymphocytes by concanavalin A. Biochem. Biophys. Res. Commun. 76, 526–533.

    Article  CAS  Google Scholar 

  • Saito M., Yoshizawa T., Aoyagi T., and Nagai Y. (1973) Involvement of proteolytic activity in early events in lymphocyte transformation by phytohemagglutmin. Biochem. Biophys. Res. Commun. 52, 569–575.

    Article  PubMed  CAS  Google Scholar 

  • Samejima K., Dairman W., and Udenfriend S. (1971) Condensation of ninhydrin with aldehydes and primary ammes to yield highly fluorescent ternary products, Studies on the mechanism of the reaction and some characterishcs of the condensation product. Anal. Biochem. 42, 222–236.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer W. W (1978) Deformation of isolated neurofilaments and the pathogenesis of neuroflbrillary pathology. J. Neuropafhol. Exp. Neurol 37, 244–254.

    Article  CAS  Google Scholar 

  • Schwartz J.-C., Malfroy B., and De La Baume S. (1981) Brological inactivation of enkephalins and the role of enkephalm-dipeptidylcarboxy-peptidase (enkephahnase) as neuropeptidase. Life Sci. 29, 1715–1740.

    Article  PubMed  CAS  Google Scholar 

  • Shaw E. (1970) Selective chemical modrfication of protein. Physlol. Rev. 50, 244–296.

    CAS  Google Scholar 

  • Sher J. H., Stracher A., Shafiq S. A., and Hardy-Stashin J. (1981) Successful treatment of murine muscular dystrophy with the proteinase inhibitor leupeptin. Proc. Natl. Acad. Sci. USA 78, 7742–7744.

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M., Hazato T., and Katayama T. (1983) A membrane-bound ammopeptidase isolated from monkey and its action on enkephalin. Biochim. Biophys. Acta 756, 223–229.

    PubMed  CAS  Google Scholar 

  • Somack R. (1980) Complete phenylthiohydantoin ammo acid analysis by high performance chromatography on ultrasphere-octadecyltri-methyloxylsilane. Anal. Biochem. 104, 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Stahlhut R. W. and Hymowltz T. (1983) Variation in the low molecular weight proteinase inhibitors of soybeans. Crop Sci. 23, 766–769.

    Article  CAS  Google Scholar 

  • Stein S. (1980) Ultramicro Isolation and Analysis of Peptides and Proteins, in Polypeptide Hormones (Beers R. F. and Bassett E. G., eds.), Raven, New York.

    Google Scholar 

  • Stein S., Bohlen P., Stone J., Dairman W., and Udenfriend S. (1973) Amino acid analysis with fluorescamine at the picomole level Arch. Biochem. Biophys. 155, 202–212.

    Article  PubMed  CAS  Google Scholar 

  • Steiner D. F., Quinn P. S., Chan S. J., Marsh J., and Tager H. S. (1980) Processmg mechanisms in the biosynthesis of proteins. Ann NY Acud. Sci. 343, 1–16

    Article  CAS  Google Scholar 

  • Stern F. and Marks N (1979) Glycyl-glycine hydrolase of rat brain: Distribution and role in cleavage of glycine-rich oligopeptides. Brain Res. Bull. 4, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Supattapone S., Fricker L. D., and Snyder S H. (1984) Purification and characterization of a membrane-bound enkephalin-forming carboxypeptidase, “enkephalin convertase.” J. Neurochem. 42, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Swerts J. P., Perdrisot R., Malfroy B., and Schwartz J.-C. (1979) Is “enkephalmase” identical with “angiotensin-converting enzyme?” Eur. J. Pharmacol. 53, 209–210.

    Article  PubMed  CAS  Google Scholar 

  • Takahara H and Sinohara H. (1982) Mouse plasma trypsin inhibitor: Isolation and characterization of α-1-antitrypsin and contrapsin, a novel trypsin inhibitor. J. Biol. Chem. 257, 2438–2446.

    PubMed  CAS  Google Scholar 

  • Thorsett E. D., Harris E. E., Paterson E. R., Greenlee W. J., Patchett A. A., Ulm E H., and Vassil T. C. (1982) Phosphorus-containing inhibitors of angiotensin-converting enzyme Proc. Natl. Acad. Sci. USA 79, 2176–2180.

    Article  PubMed  CAS  Google Scholar 

  • Travis T. and Salvesen G. S. (1983) Human plasma proteinase inhibitors. Ann. Rev. Btochem. 52, 655–709.

    Article  CAS  Google Scholar 

  • Turner A. J., Matsas R., and Kenny A J. (1985) Are there neuropeptide-specific peptidases? Bzochem. Pharmacol 34, 1347–1356.

    Article  CAS  Google Scholar 

  • Umezawa H., Takita T, and Shiba T.(1978) Bioactive Peptides Produced by Microorganisms. Kodansha, Tokyo.

    Google Scholar 

  • Wallace E. F., Weber E, Barchas J. D., and Evans C. J (1984) A putative processmg enzyme from Aplysia that cleaves dynorphin A at the single arginine residue. Biochem. Blophys Res Commun 119, 415–422.

    Article  CAS  Google Scholar 

  • Walsh K. A. (1975) Unifymg Concepts Among Proteases, in Proteases and Biological Control (Reich E., Rifkin D. B., and Shaw E., eds.), Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Zhang A.-Z., Yang H.-Y.T., and Costa E. (1982) Nociception, enkephalm content and dipeptidyl carboxypeptidase activity in brain of mice treated with exopeptrdase inhibitors. Neurophurmacology 21, 625–630.

    Article  CAS  Google Scholar 

  • Zubenko G. S. and Nixon R. A. (1984) Mood-elevating effect of captoprll in depressed patrents. Am. J. Psychiatry 141, 110–111.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Peter H. Yu

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Hui, KS., Lajtha, A. (1986). Proteinases and Peptidases. In: Boulton, A.A., Baker, G.B., Yu, P.H. (eds) Neurotransmitter Enzymes. Neuromethods, vol 5. Humana Press. https://doi.org/10.1385/0-89603-079-2:421

Download citation

  • DOI: https://doi.org/10.1385/0-89603-079-2:421

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-079-4

  • Online ISBN: 978-1-59259-610-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics