Skip to main content

Brain Glutamate Decarboxylase

  • Protocol
Neurotransmitter Enzymes

Part of the book series: Neuromethods ((NM,volume 5))

Abstract

Glutamate decarboxylase (glutamate 1-carboxylyase, EC 4.1.1.15, GAD)* is the major, rate-limiting enzyme in brain for synthesizing gamma-aminobutyric acid (GABA). Total GAD activity in brain is 10–20 times greater than the observed rate of GABA synthesis (Collins, 1972; Matsui and Deguchi, 1977; Casu and Gale, 1981), indicating that GAD operates at only a fraction of its capacity. Although other routes of synthesis have been suggested, they appear to be minor (Baxter, 1976). GAD has a distinct regional distribution in brain that parallels the regional distribution of GABA (Collins, 1972; Fahn, 1976), as would be expected of a rate-limiting biosynthetic enzyme. Because GAD appears to be the major biosynthetic enzyme for GABA, it is used as one of the principal markers for GABA neurons and presynaptic terminals; it does not appear to be present in appreciable amounts in glial cells (Schousboe et al., 1977; Wu et al., 1979). GAD is concentrated in the presynaptic endings of GABA neurons, but is also present in the cell bodies, as shown by subcellular fractionation (Salganicoff and DeRobertis, 1965; Van Kempen et al., 1965; Fonnum, 1968) and by immunocytochemistry (Saito et al., 1974; Wood et al., 1976; Ribak et al., 1978; Oertel et al., 1981c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers R. W. and Brady R. 0. (1959) The distribution of glutamic decarboxylase in the nervous system of the monkey. J, Biol. Chem. 234, 926–928.

    CAS  Google Scholar 

  • Bakay R. E and Harris A. B (1981) Neurotransmitter, receptor and biochemical changes in monkey cortical epileptic foci. Brain Res 206, 387–404.

    Article  PubMed  CAS  Google Scholar 

  • Baxter C. F. (1970) The Nature of γ-Ammobutync Acid, in Handbook of Neurochemistry Vol. III (Lajtha A., ed.), Plenum, New York.

    Google Scholar 

  • Baxter C. F. (1976) Some Recent Advances in Studies of GABA Metabolism and Compartmentation, in GABA in Nervous System Function (Roberts E., Chase T N, and Tower D. B., eds), Raven, New York.

    Google Scholar 

  • Beart P. M., Kelly J S., and Schon F. (1974) γ-Ammobutyric acid in the peripheral nervous system, pineal, and posterior pituitary Biochem. Soc. Trans. 2, 266–268.

    CAS  Google Scholar 

  • Bird T. D. (1976) Normal glutamic acid decarboxylase activity in kidney tissue from patients with Huntington’s disease. J. Neurochem. 27, 1555–1557.

    Article  PubMed  CAS  Google Scholar 

  • Bird E. D., MacKay A. V. P., Rayner C. N., and Iversen L. L. (1973) Reduced glutamic-acid decarboxylase activity of postmortem brain in Huntington’s Chorea. Lancer ii, 1090–1092.

    Article  Google Scholar 

  • Blindermann J-M., Maitre M, Ossola L., and Mandel P. (1978) Purification and some properties of L-glutamate decarboxylase from human brain. Eur. J Biochem. 86, 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Blindermann J.-M., Maitre M., and Mandel P. (1979) Apoenzyme concentration and turnover number of L-glutamate decarboxylase in some regions of rat brain J Neurochem. 32, 245–246.

    Article  PubMed  CAS  Google Scholar 

  • Bowen D. M., Smith C. R., White P., and Davison A. N. (1976) Neuro-transmitter-related enzymes and mdices of hypoxia in senile dementia and other abiotrophies. Brain 99, 459–496.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Casu M. and Gale K. (1981) Intracerebral injection of gamma-vinylGABA: Method for measuring rates of GABA synthesis in specific brain regions in viva. Life Sci. 29, 681–688.

    Article  PubMed  CAS  Google Scholar 

  • Chrystal E., Bey P., and Rando R. R. (1979) The irreversible inhibition of brain L-glutamate-1-decarboxylase by (2RS,3E)-2-methyl-3,4-didehydroglutamic acid. J. Neurochem. 32, 1501–1507.

    Article  PubMed  CAS  Google Scholar 

  • Collins C. G. S. (1972) GABA-2-oxoglutarate transaminase, glutamate decarboxylase and the half-life of GABA in different areas of rat brain. Biochem. Pharmacol. 21, 2849–2858.

    Article  PubMed  CAS  Google Scholar 

  • Covarrubias M. and Tapia R. (1978) Calcium-dependent binding of brain glutamate decarboxylase to phospholipid vesicles. J. Neurochem. 31, 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  • Crow T. J., Owen F., Cross A J., Lefthouse R., and Longden A. (1978) Brain biochemistry in schizophrenia. Lancet, i, 36–37.

    Google Scholar 

  • Danzin C., Casara P., Claverie N., and Grove J. (1983) Effects of the enantiomers of 5-hexyne-1,4-diamine on ODC, GAD and GABA-T activities in the rat Biochem. Pharmacol. 32, 941–942.

    Article  PubMed  CAS  Google Scholar 

  • Davis B. J. (1964) Disc-electrophoresis. II. Methods and application to human serum proteins. Ann. NY Acad. Sci. 121, 404–427.

    Article  PubMed  CAS  Google Scholar 

  • del Rio R. M. (1981) γ-Aminobutyric acid system in rat oviduct. J. Biol.Chem. 256, 9816–9819

    Google Scholar 

  • Di Chiara G., Porceddu M. L., Morelli M., Mulas M. L., and Gessa G. L. (1979) Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res. 176, 273–284.

    Article  PubMed  Google Scholar 

  • Drummond R J and Phillips A T. (1974) L-glutamic acid decarboxylase in non-neural tissues of the mouse. J. Neurochem. 23, 1207–1213.

    Article  PubMed  CAS  Google Scholar 

  • Emson P. C. and Joseph M. H. (1975) Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res 93, 91–110

    Article  PubMed  CAS  Google Scholar 

  • Endo A. and Kitahara N. (1981) Inhibition of brain glutamate de-carboxylase by 4,5-dihydroxyisophthalic acid and related compounds. J. Antbiot 34, 1351–1354.

    CAS  Google Scholar 

  • Fahn S. (1976) Regional Distribution Studies of GABA and Other Putative Neurotransmitters and Their Enzymes, in GABA in Nervous System Function (Roberts E., Chase T. N., and Tower D. B., eds.), Raven, New York.

    Google Scholar 

  • Fahn S. and Coté L. J. (1976) Stability of enzymes in postmortem rat brain. J Neurochem 26, 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F. (1968) The distribution of glutamate decarboxylase and aspar-tate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem. J 106, 401–412.

    PubMed  CAS  Google Scholar 

  • Gale K. and Casu M. (1981) Dynamic utilization of GABA in the substanua nigra: Regulation by dopamine and GABA in the striatum and its clinical and behavioral implications. Mol. Cell Biochem. 39, 369–405.

    Article  PubMed  CAS  Google Scholar 

  • Gonnard P. and Wicker A. (1974) A propos de la glutamate decarboxylase mitochondriale cerebrale. Biochimie 56, 1437–1438.

    Article  PubMed  CAS  Google Scholar 

  • Hamel E., Krause D. N., and Roberts E. (1982) Characterization of glutamic acid decarboxylase activity in cerebral blood vessels. J. Neurochem. 39, 842–849.

    Article  PubMed  CAS  Google Scholar 

  • Hattori T., McGeer P. L., Fibiger H. C., and McGeer E. G. (1973) On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain Res. 54, 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Heinamaki A. A., Malila S. I., Tolonen K. M., Valkonen K. H., and Piha R. S. (1983) Resolution and purification of taurine-and GABA-synthesizing decarboxylases from calf brain. Neurochem. Res. 8, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L., Kvamme E., McGeer E G, and Schousboe A., eds. (1983) Glutamine, Glutamate, and GABA in the Central Nervous System. Alan R. Liss, New York.

    Google Scholar 

  • Holdiness M. R. and Justice J. B (1981) Gas chromatographic-mass spectrometric determination of glutamic acid decarboxylase activity in subregions of rat brain. J Chromatogr. 225, 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Houser C. R., Hendry S. H. C., Jones E. G., and Vaughn J. E. (1983) Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J. Neurocytol. 12, 617–638.

    Article  PubMed  CAS  Google Scholar 

  • Iversen L. L., Bird E., Spokes E., Nicholson S. H., and Suckling C. J. (1979) Agonist Specificity of GABA Binding Sites in Human Brain and GABA in Huntington’s Disease and Schizophrenia, in GABA-Neurotransmitters: Pharmacochemical, Biochemical, and Pharmacological Aspects (Krogsgaard-Larsen P., Scheel-Kruger J,, and Kofod H., eds.), Academic, New York.

    Google Scholar 

  • Jessen K R., Mirsky R, Dennison M. E., and Burnstock G. (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa I., Iversen L L, and Kelly J S. (1976) Glutamatedecarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion, and superior cervical ganglion. J. Neurochem. 27, 1267–1269.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick I. C., Starr M S., Fletcher A., James T. A., and MacLeod M. K. (1980) Evidence for a GABAergic nigrothalamic pathway in the rat I. Behavioural and biochemical studies. Exp. Brain Res. 40, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Kohler C., Chan-Palay V., and Wu J.-Y (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippo-campal region in the rat brain. Anat. Embryol. 169, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P., Scheel-Kruger J., and Kofod H., eds. (1979) GABA-Neurotransmitters. Academic, New York.

    Google Scholar 

  • Lal H., Fielding S., Malick J., Roberts E., Shah N., and Usdin E., eds. (1980) GABA Neurotransmission: Current Developments in Physiology and Neurochemistry. Brain Res. Bull. 5,suppl. 2, 1–946.

    Google Scholar 

  • Lloyd K. G., Munari C., Bossi L., Stoeffels C., Talairach J., and Morselli P. L (1981) Biochemical Evidence for the Alterations of GABA-Mediated Synaptic Transmission in Pathological Brain Tissue (Stereo EEG or Morphological Definition) From Epileptic Patients, in Neurotransmitters, Seizures and Epilepsy. (Morselli P. L., Lloyd K. G., Loscher W., Meldrum B, and Reynolds E. H., eds.), Raven, New York.

    Google Scholar 

  • MacDonnell P. and Greengard O. (1975) The distribution of glutamate decarboxylase in rat tissues: Isotopic vs fluorimetric assays. J. Neurochem 24, 615–618.

    PubMed  CAS  Google Scholar 

  • Maitre M., Blindermann J. M., Ossola L., and Mandel P. (1978) Comparison of the structures of L-glutamate decarboxylases from human and rat brains. Biochem. Biophys. Res. Commun. 85, 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. L. and Martin S B. (1982) Effect of nucleoudes and other inhibitors on the inactivation of glutamate decarboxylase. J. Neurochem 39, 1001–1008.

    Article  PubMed  CAS  Google Scholar 

  • Martin S. B and Martin D L (1979) Stimulation by phosphate of the activation of glutamate apodecarboxylase by pyridoxyl-5’-phosphate and its implications for the control of GABA synthesis. J Neurochem. 33, 1275–1283.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. L., Meeley M P., Martin S. B., and Pedersen S. (1980) Factors influencing the activation and inactivation of glutamate decarboxylase. Brain Res. Bull. 5,suppl. 2, 57–61.

    Article  CAS  Google Scholar 

  • Matsuda T., Wu J.-Y,, and Roberts E. (1973) Sodium dodecyl sulfate acrylamide gel electrophoresis of glutamic acid decarboxylase from mouse brain. J Neurochem 21, 167–172

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y. and Deguchi T. (1977) Effects of gabaculine, a new potent inhibitor of gamma-aminobutyrate transaminase on the brain gam-ma-aminobutyrate content and convulsions in mice. Life Sci 20, 1291–1296.

    Article  PubMed  CAS  Google Scholar 

  • McGeer E. G., Fibiger H. C, McGeer P. L., and Brooke S. (1973a) Temporal changes in amine-synthesizing enzymes of rat extrapyramidal structures after hemitranssection or 6-hydroxydopamine admimstration. Brain Res. 52, 289–300.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., McGeer E. G., and Fibiger H C (1973b) Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. Neurology 23, 912–917.

    PubMed  CAS  Google Scholar 

  • McGeer P. L., McGeer E. G., and Wada J A. (1971) Glutamic acid decarboxylase in Parkmson’s disease and epilepsy. Neurology 21, 1000–1007.

    PubMed  CAS  Google Scholar 

  • Meeley M. P and Martin D. L. (1983a) Inactivation of brain glutamate decarboxylase and the effects of adenosine 5′-triphosphate and inorganic phosphate Cell. Mol. Neurobiol 3, 39–54

    Article  PubMed  CAS  Google Scholar 

  • Meeley M. P. and Martin D L. (1983b) Reactivation of substrate-inactivated brain glutamate decarboxylase. Cell. Mol. Neurobiol. 3, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf B. W., Jung M. J., Lippert B, Casara P., Bohlen P., and Schechter P. J. (1979) γ-AcetylenicGABA and γ-VmylGABA—two Enzyme-Activated Irreversible Inhibitors of GABA Aminotransferase, in GABA-Neurotransmitters (Krogsgaard-Larsen P., Scheel-Kruger J., and Kofod H., eds.), Academic, New York.

    Google Scholar 

  • Miller L. P. and Martin D. L. (1973) An artifact in the radiochemical assay of brain mitochondrial glutamate decarboxylase. Life Sci. 13, 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  • Miller L. P., Walters J R., and Martin D. L. (1977) Postmortem changes implicate adenine nucleotides and pyridoxal-5′-phosphate in regulation of brain glutamate decarboxylase. Nature 266, 847–848

    Article  PubMed  CAS  Google Scholar 

  • Miller L. P., Martin D. L., Mazumder A., and Walters J. R. (1978) Studies on the regulation of GABA synthesis: Substrate-promoted dissociation of pyridoxal-5′-phosphate from GAD. J. Neurochem. 30, 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Miller L. P., Walters J. R., Eng N., and Martin D. L. (1980) Glutamate holodecarboxylase levels and the regulation of GABA synthesis Brain Res. Bull 5,suppl. 2, 89–94.

    Article  CAS  Google Scholar 

  • Molinoff P. B. and Kravitz E. A (1968) The metabolism of γ-ammobutyric acid (GABA) in the lobster nervous system—glutamic decarboxylase. J Neurochem 15, 391–409.

    Article  PubMed  CAS  Google Scholar 

  • Morin C. W. and Wasterlain C. G. (1978) Stoichiometry of GABA and CO2 formation in glutamate decarboxylase assays: Alteration by an impurity in L-[U-14C]-glutamate. J Neurochem. 31, 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Oertel W H., Schmechel D. E., Tappaz M. L., and Kopin I. J. (1981a) Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6, 2689–2700.

    Article  PubMed  CAS  Google Scholar 

  • Oertel W. H., Schmechel D. E., Weise V. K., Ransom D. H., Tappaz M. L., Krutzsch H. C., and Kopin I. J. (1981b) Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylase in rat liver and brain. Neuroscience 6, 2701–2714.

    Article  PubMed  CAS  Google Scholar 

  • Oertel W. H., Schmechel D. E., Mugnaini E., Tappaz M. L., and Kopin I. J. (1981c) Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience 6, 2715–2735.

    Article  PubMed  CAS  Google Scholar 

  • Ornstein L (1964) Disc electrophoresis. I. Background and Theory. Ann. NY Acad Sci. 121, 321–349.

    Article  PubMed  CAS  Google Scholar 

  • Pahuja S. L. and Reid T W. (1983) A simple microassay for glutamic acid decarboxylase by ion exchange thin-layer chromatography. J. Liquid. Chromatogr. 6, 127–137.

    Article  CAS  Google Scholar 

  • Perry E K., Gibson G B., Perry R. H., and Tomlinson B. E. (1977) Neurotransmitter enzyme abnormalities in senile dementia. J. Neural. Sci. 34, 247–265.

    Article  CAS  Google Scholar 

  • Perry T. L., Hansen S., and Kloster M. (1973) Huntington’s Chorea—Deficiency of gamma-ammobutyric acid in brain. N. Engl. J. Med. 288, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Porter T G. and Martin D. L. (1984) Evidence for feedback regulation of glutamate decarboxylase by γ-aminobutyric acid. J Neurochem. 43, 1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • Porter T G., Martin S. B, and Martin D. L. (1982) Inhibitors and inactivation promoters of glutamate decarboxylase. Soc. Neurosci. Abstr. 8, 819.

    Google Scholar 

  • Porter T. G., Spink D. C., Martin S. B., and Martin D. L. (1985) Transaminations catalyzed by brain glutamate decarboxylase. Biochem. J. 231, 705–712.

    PubMed  CAS  Google Scholar 

  • Puymirat J., Javoy-Agid F., Gaspar P., Ploska A., Prochiantz A., and Agid Y. (1979) Post mortem stability and storage in the cold of brain enzymes. J. Neurochem. 32, 449–454.

    Article  PubMed  CAS  Google Scholar 

  • Rando R. R. (1979) Specific Inhibitors of GABA Metabolism, in GABA-Neurotransmitters (Krogsgaard-Larsen P., Scheel-Kruger J., and Kofod H., eds.), Academic, New York.

    Google Scholar 

  • Rando R. R. (1981) The chemical labeling of glutamate decarboxylase in vivo. J. Biol Chem 256, 1111–1114.

    PubMed  CAS  Google Scholar 

  • Ribak C. E., Harris A. B., Vaughn J. E., and Roberts E. (1981) Immunocytochemical Changes in Cortical GABA Neurons in a Monkey Model of Epilepsy, in Neurotransmitters, Seizures and Epilepsy. (Morselli P. L., Lloyd K. G., Loscher W., Meldrum B., and Reynolds E. H., eds.), Raven, New York.

    Google Scholar 

  • Ribak C. E., Vaughn J. E., and Saito K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 140, 315–332.

    Article  PubMed  CAS  Google Scholar 

  • Ribak C. E., Harris A. B., Vaughn J. E., and Roberts E. (1979) Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsey. Science 205, 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E. and Simonsen D. G (1963) Some properties of L-glutamic decarboxylase in mouse brain Biochem Pharmacol 12, 113–134

    Article  PubMed  CAS  Google Scholar 

  • Roberts E., Chase T N., and Tower D. B., eds (1976) GABA in Nervous System Function Raven, New York

    Google Scholar 

  • Ryan L. D. and Roskoski R. (1976) Resolution and reconstitution of glutamate decarboxylase from cerebellum Neurochem Res 1, 37–45.

    Article  CAS  Google Scholar 

  • Saito K., Barber R., Wu J.-Y., Matsuda T., Roberts E., and Vaughn J. E. (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. USA 71, 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Salganicoff L. and DeRobertis E (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine, and γ-ammobutyric acid cycles in brain. J Neurochem 12, 287–309

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A., Svenneby G, and Hertz L. (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem 29, 999–1005

    Article  PubMed  CAS  Google Scholar 

  • Seligmann B., Miller L. P., Brockman D. E., and Martin D. L. (1978) Studies on the regulation of GABA synthesis. The interaction of adenme nucleotides and glutamate with brain glutamate decarboxylase. J Neurochem. 30, 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Spears R. M. and Martin D. L (1982) Resolution and brain regional distribution of cysteine sulfinate decarboxylase isoenzymes from hog brain. J. Neurochem. 38, 985–991.

    Article  PubMed  CAS  Google Scholar 

  • Spink D. C. and Martin D. L. (1983) Multiple Forms of Glutamate Decarboxylase in Hog, Rat, and Human Brain, in Glutamate, Glutamine and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schoushoe A., eds.), Alan R. Liss, New York.

    Google Scholar 

  • Spink D. C., Wu S. J., and Martin D L. (1983) Multiple forms of glutamate decarboxylase in porcine brain J. Neurochem. 40, 1113–1119.

    Article  PubMed  CAS  Google Scholar 

  • Spink D. C., Porter T. G., Wu S. J, and Martin D L. (1985) Characterization of three kinetically distinct forms of glutamate decarboxylase from pig brain Biochem. J. 231, 695–703

    PubMed  CAS  Google Scholar 

  • Spokes E. G. S. and Koch D. J. (1978) Postmortem stability of dopamine, glutamate decarboxylase and choline acetyltransferase in the mouse brain under conditions simulating the handling of human autopsy material. J. Neurochem 31, 381–383

    Article  PubMed  CAS  Google Scholar 

  • Spokes E. G. S., Garrett N J., and Iversen L. L. (1979) Differential effects of agonal status on measurements of GABA and glutamate decarboxylase in human postmortem tissue from control and Hunting-ton’s chorea subjects. J Neurochem 33, 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen J. (1972) Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fiber systems. Evidence that the enzyme is localized in intrinsic neurones. Brain Res. 40, 215–235.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen J (1976) Distribution of the Components of the GABA System in Neuronal Tissue. Cerebellum and Hippocampus—Effects of Axotomy, in GABA in Nervous System Function (Roberts E., Chase T. N., and Tower D B., eds), Raven, New York.

    Google Scholar 

  • Susz J. P., Haber B., and Roberts E. (1966) Purification and some properties of mouse brain L-glutamic decarboxylase. Biochemistry 5, 2870–2876

    Article  PubMed  CAS  Google Scholar 

  • Sze P. Y and Lovell R. A. (1970) Reduction of level of L-glutamic acid decarboxylase by γ-aminobutyric acid in mouse brain. J Neurochem. 17, 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  • Taberner P V, Pearce M J., and Watkins J, C. (1977) The inhibition of mouse brain glutamate decarboxylase by some structural analogues of L-glutamic acid. Biochem. Pharmacol 26, 345–349.

    Article  PubMed  CAS  Google Scholar 

  • Tapia R (1975) Biochemical Pharmacology of GABA in the CNS, in Handbook of Psychopharmacology. Vol. 4 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.), Plenum, New York

    Google Scholar 

  • Tursky T. (1970) Inhibition of brain glutamate decarboxylase by adeno-sme triphosphate Eur J Biochem 12, 544–549.

    Article  PubMed  CAS  Google Scholar 

  • van Kempen G. M. J, van den Berg C. J., van der Helm H. J., and Veldstra H. (1965) Intracellular localization of glutamate decarboxylase, gam-ma-ammobutyrate transaminase and some other enzymes in brain tissue. J Neurochem 12, 581–587.

    Article  PubMed  Google Scholar 

  • White H. L. (1981) Glutamate as a precursor of GABA in rat brain and peripheral tissues. Mol. Cell. Biochem. 39, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Wood J. G., McLaughlin B. J., and Vaughn J. E. (1976) Immunocyto-chemical Localization of GAD in Electronmicroscopic Preparations of Rodent CNS, in GABA in Nervous System Function (Roberts E., Chase T N., and Tower D B, eds), Raven, New York.

    Google Scholar 

  • Wu J.-Y. (1976) Purification, Characterization and Kinetic Studies of GAD and GABA-T from Mouse Brain, in GABA in Nervous System Function (Roberts E., Chase, T. N. and Tower D. B., eds.), Raven, New York.

    Google Scholar 

  • Wu J.-Y (1977) A comparative study of L-glutamate decarboxylase from mouse brain and bovine heart with purified preparations. J. Neurochem 28, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Wu J.-Y (1982) Purification and characterization of cysteic acid and cys-teme sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc. Natl Acad Sci. USA 79, 4270–4274.

    Article  PubMed  CAS  Google Scholar 

  • Wu J.-Y. and Roberts E. (1974) Properties of brain L-glutamate decarboxylase. Inhibition studies. J Neurochem. 23, 759–767

    Article  PubMed  CAS  Google Scholar 

  • Wu J.-Y., Matsuda T., and Roberts E. (1973) Purification and characterization of glutamate decarboxylase from mouse brain. J Biol. Chem 248, 3029–3034

    PubMed  CAS  Google Scholar 

  • Wu P. H., Durden D. A., and Hertz L. (1979) Net production of γ-ammobutyric acid in astrocytes in primary cultures determined by a sensitive mass spectrometric method. J Neurochem. 32, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Wu S. J. and Martin D. L. (1984) Binding of ATP to brain glutamate decarboxylase as studied by affinity chromatography. J. Neurochem 42, 1607–1612.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Peter H. Yu

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Martin, D.L. (1986). Brain Glutamate Decarboxylase. In: Boulton, A.A., Baker, G.B., Yu, P.H. (eds) Neurotransmitter Enzymes. Neuromethods, vol 5. Humana Press. https://doi.org/10.1385/0-89603-079-2:361

Download citation

  • DOI: https://doi.org/10.1385/0-89603-079-2:361

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-079-4

  • Online ISBN: 978-1-59259-610-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics