Skip to main content

Receptor Binding in Drug Discovery and Development

  • Protocol
Receptor Binding

Part of the book series: Neuromethods ((NM,volume 4))

Abstract

The ultimate goal of any drug development program is the application of basic research, both chemical and biological, to the discovery of therapeutic modalities that can prevent, alleviate, or cure the malfunctions in the mammalian homeostatic mechanism that lead to the disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bannerjee S. P., Kung L. S, Riggi S. J, and Chanda S. K. (1977) Development of β-adrenergic receptor subsensitivity by antidepressants Nature (Lond.) 268, 455–458

    Article  Google Scholar 

  • Baudry M. and Lynch G. (1981) Characterization of two [3H]-glutamate binding sites in rat hippocampal membranes J Neurochem 36,811–820.

    Article  PubMed  CAS  Google Scholar 

  • Bennett J P (1978) Methods in Binding Studies, in Neurotransmitter-Receptor Binding (Yamamura H. I., Enna S. J, and Kuhar M. J., eds.), pp. 57–90, Raven, New York.

    Google Scholar 

  • Billard W., Ruperto V, Crosby G, Iorio L. C, and Barnett A (1984) Characterization of the binding of 3H-SCH 23390, a selective D-l receptor antagonist ligand, in rat striatum Life Sci 35, 1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S, Bittiger H., Delini-Stula A, and Ortmann R (1982) Septo-hippocampal system. Target for substituted benzamides? Eur J Pharmacol 79, 225–232

    Article  PubMed  CAS  Google Scholar 

  • Black J W, Duncan W A M., Durant C. J, Ganellin C R, and Parsons E. M. (1972) Definition and antagonism of histamine H2-receptors Nature (Lond.) 236, 385–390

    Article  PubMed  CAS  Google Scholar 

  • Blackshear M. A. and Sanders-Bush E (1983) Serotonin receptors after acute and chronic treatment with mianserin. J. Pharmacol. Exp. Ther. 221, 303–308

    Google Scholar 

  • Boulenger J-P., Patel J., Post R. M., Parma A. M., and Marangos P. J. (1983) Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 32, 1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Bowling A. C. and DeLorenzo R. J. (1982) Micromolar affinity benzodiazepine receptors: Identification and characterization in central nervous system. Science 216, 1247–1250.

    Article  PubMed  CAS  Google Scholar 

  • Burgen A. S. V. (1966) The drug-receptor complex. J, Pharm. Pharmacol 18, 137–148.

    CAS  Google Scholar 

  • Chang R. S. L. and Snyder S. H. (1978) Benzodiazepine receptors: Labelling in intact animals with [3H]flunitrazepam. Eur. J. Pharmacol 48, 213–218

    Article  PubMed  CAS  Google Scholar 

  • Charney D. S., Menkes D. B., and Heninger G. R. (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch. Gen. Psychiatry 38, 1160–1180.

    PubMed  CAS  Google Scholar 

  • Cheng Y. C. and Prusoff W. H. (1973) Relationship between the inhibition constant (K1) and the concentratron of the inhibitor which causes 50 percent inhibition (IC50) of an enzymic reaction. Biochem Pharmacol. 22, 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Clineschmidt B. V. (1979) MK 212: A novel serotonomimetic. Gen. Pharmacol. 10, 287–291

    CAS  Google Scholar 

  • Clineschmidt B. V., McKendry M. A., Papp N. L., Pflueger A. B., Stone C. A., Totaro J A, and Williams M. (1979) Stereospecific antidopaminergic and anticholinergic actions of the enantiomers of (±) l-cyclopropylmethyl-4-(3-trifluromethyl-5H-dibenzo[a,b]cyclohep-ten-5-ylidene)piperidine(CTC), a derivative of cyproheptadine J Pharmacol. Exp. Ther 208, 460–467

    PubMed  CAS  Google Scholar 

  • Clineschmidt B. V., Williams M., Witoslawski J. J., Bunting P. R, Risley E. A., and Totaro J. A. (1982) Restoration of shock suppressed behavior by treatment with ( + )-5-methyl-10,11-dihydro-5H-di-benzo[a,b]-cyclohepten-5,10-amine (MK 801), a substance with potent anticonvulsant, central sympathomimetic and apparent anxiolytic properties. Drug Develop. Res. 2, 147–163.

    Article  CAS  Google Scholar 

  • Cohen N. C. (1983) Towards the rational design of new leads in drug research. Trends Pharmacol. Sci. 4, 503–506.

    Article  CAS  Google Scholar 

  • Cornish-Bowden A. (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137, 143–144

    PubMed  CAS  Google Scholar 

  • Creese I. and Sibley D R. (1981) Receptor adaptation to centrally acting drugs. Ann Rev. Pharmacol Toxicol. 21, 357–391.

    Article  CAS  Google Scholar 

  • Creese I., Burt D. R, and Snyder S. H. (1976) Dopamine receptors and average clinical doses Science 194, 546.

    Article  PubMed  CAS  Google Scholar 

  • Creese I., Hamblin M. W, Leff S. E, and Sibley D. R. (1982) CNS dopamine receptors, in Handbook of Psychopharmacology, vol. 17 (Iversen L. L, Iversen S. D., and Snyder S. H, eds.), Plenum, New York.

    Google Scholar 

  • Cuatrecasas P. and Hollenberg M D (1976) Membrane receptor and hormone action.Adv. Prot. Chem 30, 251–451

    Article  CAS  Google Scholar 

  • Cushman D W. and Ondetti M. A (1980) Inhibitors of angiotensin-converting enzyme for treatment of hypertension Biochem Pharmacol 29, 1871–1877.

    Article  PubMed  CAS  Google Scholar 

  • Delay J and Deniker P (1952) Trente-hult cas de psychoses traltees par la cure prolongee et contmue de 4560RP. Le Congres des Al et Neurol de Langue Fr. In, Compte rendu de Congres, Masson et Cie, Paris

    Google Scholar 

  • Enna S. J. and Snyder S. H. (1975) Properties of gamma-ammobutyric (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100, 81–97.

    Article  PubMed  CAS  Google Scholar 

  • Fozard J. R. (1982) Mechanism of the hypotensive effect of ketanserin J Cardiovasc Pharmacol 4, 829–838

    Article  PubMed  CAS  Google Scholar 

  • Goodford P J. (1984) Drug design by the method of receptor fit J Med Chem. 27, 557–564

    Article  CAS  Google Scholar 

  • Gross F. (1983) Introduction The Present Situation of the Search for New Drugs, in Decision Making In Drug Research (Gross F, ed.) pp 1–3, Raven, New York

    Google Scholar 

  • Hafner D., Heinen E., and Noack E. (1977) Mathematical analysis of concentration-response relationships. Method for the evaluation of the ED50 and the number of binding sites per receptor molecule using the logit transformation Arzn Forsch 27, 1871–1874

    CAS  Google Scholar 

  • Hammer R. and Giachetti A (1980) Selective muscarinic receptor antagonists. Trends Pharmacol Sci 5 18–20.

    Article  Google Scholar 

  • Helmeste D M. and Tang S W. (1984) Temperature-sensitive high-affinity [3H]serotonin binding Characterization and effects of antidepressant treatment Life Sci 35, 759–767

    Article  PubMed  CAS  Google Scholar 

  • Hrdina P. General Principles of Receptor Binding, in Neuromethods, vol. 4 (Boulton A A, Baker G B, Hrdina P, eds), Humana, Clifton, New Jersey (in press)

    Google Scholar 

  • Hung C-R, Hong J-S., and Bondy S C. (1982) The prevention of an artifact in receptor binding assay by an improved technique. Life Sci 30, 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  • James I. F. and Goldstein A. (1984) Site-directed alkylating of multiple opioid receptors. I Binding selectivity Mol Pharmacol 25, 337–342

    PubMed  CAS  Google Scholar 

  • James I. F., Chavkin C., and Goldstein A. (1982) Preparation of brain membranes containing a single type of opioid receptor highly selective for dynorphin Proc Nat1 Acad. Sci USA 79, 7570–7574.

    Article  CAS  Google Scholar 

  • Jeevanjee F., Johnson A. M., Loudon J. M., and Nicholass J. M. (1984) Enhancement of [3H]-flunitrazepam binding by mianserin in vivo Neurosci Lett 46, 305–309

    Article  PubMed  CAS  Google Scholar 

  • Kendall D. A., Duman R., Slopis J, and Enna S. J. (1982a) The influence of adrenocorticotropin and yohimbine on antidepressant-induced declines in rat brain neurotransmitter receptor binding and function J. Pharmacol. Exp. Ther. 222, 566–571.

    PubMed  CAS  Google Scholar 

  • Kendall D A., Taylor D P, and Enna S. J (1982b) 3H-Tetrahydrotrazo-done binding. Association with serotonin-1 receptors Mol Pharmacol. 23, 594–599.

    Google Scholar 

  • Kinnier W. J, Tabor R. D., and Norrell L Y. (1984) Neurochemical properties of AHR 9377. A novel inhibitor of norepmephrine reuptake Biochem. Pharmacol. 33, 3001–3005.

    Article  PubMed  CAS  Google Scholar 

  • Koe K (1983) Enhancement of benzodiazepine binding by progabide (SL 76002) and SL 75102 Drug Dev Res 3, 421–432.

    Article  CAS  Google Scholar 

  • Kohler C., Ogren S V., Haglund L., and Angeby T (1979) Regional displacement by sulpiride of [3H]spiperone binding in viva. Biochemical and behavioral evidence for a preferential action on limbic and nigral dopamme receptors Neurosci Lett 13, 51–56

    Article  PubMed  CAS  Google Scholar 

  • Kohler C., Haglund L, Ogren S O, and Angeby T (1981) Regional blockade by neuroleptic drugs of in vivo 3H-spiperone binding in the rat brain Relation to blockade of apomorphine induced hyperactivity and stereotypes. J Neural Transm 52, 163–173

    Article  PubMed  CAS  Google Scholar 

  • Kuhar M. J (1982) Localization of drug and neurotransmitter receptors in brain by light microscopic autoradiography Handbook Psychopharmacol. 15, 299–320

    CAS  Google Scholar 

  • Laduron P M. (1984) Criteria for receptor sites in binding studies. Biochem, Pharmacol 33, 833–839.

    Article  CAS  Google Scholar 

  • Laduron P. M., Janssen P. F M, and Leysen J E. (1978) Spiperone. A ligand of choice for neuroleptic receptors 2 Regional distribution and in viva displacement of neuroleptic drugs. Biochem Pharmacol 27, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • LeFur G., Guilloux F., and Uzan A (1980) In viva blockade of dopaminergic receptors from different rat brain regions by classical and atypical neuroleptics. Biochem. Pharmacol. 29, 267–270

    Article  CAS  Google Scholar 

  • Loftus P. (1986) Computer Based Approaches to Drug Design, in Drug Discovery and Development (Williams M. and Malick J. B., eds.), Humana, Clifton, New Jersey, in press.

    Google Scholar 

  • Martin G. E. and Papp N L. (1984) Blockade of MK-801 induced ipsiversive turning in 6-OHDA-lesioned rats by alpha I-autoreceptor antagonists. Pharmacol Biochem. Behav. 20, 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. E, Williams M, Clineschmidt B. V., Yarbrough G. G, Jones J. H., and Haubrich D R (1983) Potent central dopamine-like activity of a novel ergoline, EOE Life Sci. 30, 1847–1856.

    Article  Google Scholar 

  • Martin G. E, Williams M, Pettibone D J., Yarbrough G G., Clineschmidt B. V., and Jones J. H. (1984) Pharmacologic profile of a novel, potent direct acting dopamine agonist, (+)-4-propyl-9-hydroxynapthoxazine[(+)-PHNO] J Pharmacol, Exp.Ther. 230,569–576

    CAS  Google Scholar 

  • Martin I L., Brown C L, and Doble A. (1983) Multiple benzodiazepine receptors—structures in the brain or structures in the mind? Life Sci 32, 1925–1933

    Article  PubMed  CAS  Google Scholar 

  • Maxwell R A (1984) The state of the art of the science of drug discovery—an opinion Drug Develp Res 4, 375–389.

    Article  CAS  Google Scholar 

  • Mennini T., Abbiati A., Caccia S., Cotecchia S., Gomez A, and Garattini S. (1982) Brain levels of tofizopam in the rat and relationship with benzodiazepine receptors Naunyn Schmiedebergs Arch Pharmacol 321, 112–115

    Article  PubMed  CAS  Google Scholar 

  • Munson P J. and Rodbard D. (1980) Ligand. A versatile approach for characterization of ligand binding systems Anal Biochem 107, 220–239

    Article  PubMed  CAS  Google Scholar 

  • Murphy K M M, Gould R J, Largent B L, and Snyder S H (1983) A unitary mechanism of calcium antagonist drug action Proc Nat1 Acad Sci USA 80, 860–864

    Article  CAS  Google Scholar 

  • Murray T F (1982) Upregulation of rat cortical adenosine receptors following chronic administration of theophylline Eur J. Pharmacol 82, 113–114

    Google Scholar 

  • Oakley N. R. and Jones B. J (1983) Buspirone enhances [3H]flunitazepam binding in viva Eur. J Pharmacol 87, 499–500

    Article  PubMed  CAS  Google Scholar 

  • Olsen R W (1982) Drug interactions at the GABA receptor-ionophore complex. Ann Rev Pharmacol Toxicol 22, 245–277

    Article  CAS  Google Scholar 

  • Peroutka S. J. and Snyder S H. (1980) Regulation of serotonin 2 (5HT2) receptors labelled with 3H-spiroperidol by chronic treatment with the antidepressant, amitnptyline. J Pharmacol Exp Ther. 215, 582–587

    PubMed  CAS  Google Scholar 

  • Perry B D and U'Prichard D. C (1981) [3H]-rauwoulscine (α-yohimbine) A specific antagonist radioligand for brain α-2 adrenergic receptors Eur J Pharmacol 76, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Peterson N. A. (1975) Discrimination between various types of enzyme inhibition by means of Hill plots. Physiol Chem Physics 7, 277–282

    CAS  Google Scholar 

  • Peterson E. N., Jensen L. H., Honore T., Braestrup C., Kehr W., Stephens D. N, Wachtel H., Seidelman D., and Schmiechen K. L (1984) ZK91296, a partial agonist at benzodiazepine receptors Psychopharmacology 83, 240–248

    Article  Google Scholar 

  • Petrack B, Czernik A J., Cassidy J P., Bernard P., and Yokoyama N (1983) Benzodiazepine receptor ligands with opposing pharmacologic actions. Adv Biochem Psychopharmacol 38, 129–137.

    PubMed  CAS  Google Scholar 

  • Pilc A and Lloyd K G (1984) Chronic antidepressants and GABA “B” receptors A GABA hypothesis of antrdepressant drug action. Life Sci 35, 2149–2154.

    Article  PubMed  CAS  Google Scholar 

  • Pliska V. (1983) Displacement reactions employing heterologous tracer ligands in peptide receptor studies A review J Receptor Res 3, 227–238

    CAS  Google Scholar 

  • Randall W. C., Anderson P. S., Cresson E L., Hunt C. A., Lyon T. F, Rattle K. E., Remy D. C., Springer J. A., Hirschfield J M., Hoogsteen K., Williams M., Risley E A, and Totaro J. A (1979) Synthesis, assignment of absolute configuration and receptor binding studies relevant to the neuroleptic activities of a series of chiral 3-substituted cyproheptadine atropisomers J Med Chem 22, 1221–1230

    Google Scholar 

  • Rodbard D and Lewald J. E. (1970) Computer analysis of radioligand assay and radioimmunoassay data. Acta Endocrinol 147, 79–103

    CAS  Google Scholar 

  • Rodbard D. and Frazier G R. (1975) Statistical analysis of radioligand assay data. Methods Enzymol. 37, 3–22.

    Article  PubMed  Google Scholar 

  • Romer D., Busher H. H., Hill R. C., Maurer R., Petcher T. J,, Zuegner H, Benson W., Finnier E., Milowski W., and Theis P W (1982) Tifluadom, an opioid benzodiazepine. Nature (Lond.) 298, 759–760

    Article  PubMed  CAS  Google Scholar 

  • Saano V. (1982) Tofizopam selectively increases the affinity of benzodiazepine binding sites for [3H]flunitrazepam but not for beta[3H]car-boline-3-carboxylic acid ethyl ester Pharmacol. Res. Comm 14, 971–981.

    Article  CAS  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32, 229–313.

    PubMed  CAS  Google Scholar 

  • Simasko S M. and Horita A. (1982) Characterization and distribution of 3H-(3MeHis2)thyrotropin releasing hormone receptors in rat brain Life Sci. 30, 1793–1799

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Lock K L, Paugh B., Marangos P., Windsor R, and Paul S. (1980) Pharmacologic and behavioral effects of EMD 28422 A novel purine which enhances [3H]diazepam binding to brain benzodiazepine receptors. Pharmacol Biochem. Behav 12, 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Snowhill E W and Williams M (1985) Autoradiographic evaluation of adenosine A-1 and A-2 receptors in rat brain. J Neurochem 44, S88A

    Google Scholar 

  • Snyder S. H. (1983) Neurotransmitter receptor binding and drug discovery J Med. Chem 26, 1667–1672.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H., Greenberg D A., and Yamamura H I. (1976) Antischizophrenic drugs and brain cholinergic receptors Am J. Psychiatry 31, 58–61

    Google Scholar 

  • Sokoloff P, Matres M P, and Schwartz J. C. (1980) Three classes of dopamine receptors (D-2, D-3, D-4) identified by binding studies with [3H]-apomorphine and [3H]-domperidone. Naunyn Schmiedeberg’s Arch Pharmacol. 315, 89–95

    Article  CAS  Google Scholar 

  • Squires R. F. (1984) Benzodiazepine Receptors, in Handbook of Neurochemistry, vol 6 (Lajtha A, ed.), Plenum, New York.

    Google Scholar 

  • Stoof J. C., and Kebabian J, W. (1984) Minireview Two dopamine receptors. Biochemistry, physiology and pharmacology. Life Sci 35, 2281–2296.

    Article  PubMed  CAS  Google Scholar 

  • Sugrue M F (1981) Chronic Antidepressant Administration and Adaptive Changes in Central Monoammergic Systems, in Antidepressants. Neurochemical, Behavioral and Clinical Perspectives (Enna S. J., Malick J B., and Richelson E eds ), pp. 13–30, Raven, New Yo

    Google Scholar 

  • Tamminga C A, Schaeffer M. H, Smith R. C, and Davis J M. (1978) Schizophrenic symptoms improve with apomorphine. Science 200, 567–570

    Article  PubMed  CAS  Google Scholar 

  • Taylor D. P, Allen L. E., Ashworth E. M., Becker J. A, Hyslop D. A, and Riblet L. A. (1981) Treatment with trazodone plus phenoxybenzamine accelerates development of decreased type 2 serotonin binding in rat cortex Neuropharmacology 20, 513–516.

    Article  PubMed  CAS  Google Scholar 

  • Taylor D P., Allen L. E., Becker J. A., Crane M, Hyslop D. K, and Riblet L A. (1984) Changing concepts of the biochemical action of the anxioselective drug, buspirone Drug Develop Res. 4, 95–107

    Article  CAS  Google Scholar 

  • Traber J., Davies M. A, Dompert W U, Glaser T, Schuurman T, and Seidel P R (1984) Brain serotonin receptors as a target for the putative anxiolytic TVX Q 7821. Brain Res Bull 12, 741–744.

    Article  PubMed  CAS  Google Scholar 

  • Williams M (1983) Anxioselective anxioytics J Med Chem 26, 619–628

    Article  PubMed  CAS  Google Scholar 

  • Williams M. (1984) Molecular aspects of the action of benzodiazepine and non-benzodiazepine anxiolytics Prog Neuropyschopharmacol Biol Psychiatry 8, 209–247.

    Article  CAS  Google Scholar 

  • Williams M and Martin G. E (1982) Selectivity of cyproheptadine as assessed by radioligand binding J Pharm. Pharmacol 34, 58–59

    PubMed  CAS  Google Scholar 

  • Williams M and Robinson J. L (1984) Binding of the nicotinic cholinergic antagonist, dihydro-beta-erythroidine (DBE) to rat brain tissue J. Neurosci 4, 2906–2911.

    PubMed  CAS  Google Scholar 

  • Williams M and U’Prichard D C. (1984) Drug discovery at the molecular level. A decade of radioligand binding in retrospect Ann. Rep Med Chem 19, 283–292

    Article  CAS  Google Scholar 

  • Williams M, Martin G E., Remy D C., Hichens M., Mangel A. W, Taylor D A., Yarbrough G. G., Bendesky R J, King S.W., Robinson J. L., Totaro J A., and Clineschmidt B. V (1984) L-646,462, a cyproheptadine related antagonist of dopamine and serotonin with selectivity for peripheral systems. J Pharmacol Exp Ther 229, 775–781

    PubMed  CAS  Google Scholar 

  • Wood P L. (1985) Multiple Opioid Receptors in the Central Nervous System, in Neuromethods, vol. 4 (Boulton A A, Baker G B., Hrdina P, eds.), Humana, New Jersey (in press)

    Google Scholar 

  • Wood P. L. and Charleson S (1982) High affinity [3H]ethylketazocine binding Evidence for specific kappa receptors. Neuropharmacology 21, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Wood P. L, Loo P., Braunwalder A., Yokoyama N., and Cheney D. L. (1984a) In vitro characterization of benzodiazepine receptor agonists, antagonists, inverse agonists and agonist/antagorusts J. Pharmacol Exp Ther. 231, 572–576.

    PubMed  CAS  Google Scholar 

  • Wood P. L., McPherson S. E, and Braunwalder A (1984b) In viva flunitrazepam binding Actions of buspirone and clozapine Soc Neurosci. Abstr 7, 117–12

    Google Scholar 

  • Yamamura H. I., Gee K. W, Brinton R. E., Davis T. P., Hadley M., and Wamsley J. K. (1983) Light microscopic autoradiographic visualization of [3H]arginine vasopressin binding sites in rat brain. Life Sci 32, 1919–1924.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama N., Ritter B., and Neubert A. (1982) 2-Arylpyrazolo[4,3c] quinolin-3-ones: Novel agonist, partial agonist and antagonist of benzodiazepines. J. Med. Chem 25, 337–341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Williams, M., Wood, P.L. (1986). Receptor Binding in Drug Discovery and Development. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:543

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:543

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics