Skip to main content

The Benzodiazepine Receptor

  • Protocol

Part of the book series: Neuromethods ((NM,volume 4))

Abstact

The 1,4-benzodiazepines have become the most frequently prescribed of all psychotropic drugs since the introduction of the first member of this series, chlordiazepoxide, into clinical practice in 1960. The compounds are used as anxiolytics, sedative/hypnotics, anticonvulsants, and muscle relaxants. This unique spectrum of activity, together with their large therapeutic index and essential lack of disturbing peripheral side effects, has assured their popularity and today over 25 analogs are available for prescription worldwide.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Albic-Kolbah T., Kajfez F, Rendic S, Sunjic V, Konowal A., and Snatzke G. (1979) Circular dichroism and gel filtration study of binding of prochiral and choral 1,4-benzodiazepin-2-ones to human serum albumin Biochem Pharmacol. 28, 2457–2464.

    Google Scholar 

  • Alho H., Costa E., Ferrero P, Fujimoto M., Cosenza-Murphy D., and Guidotti A. (1985) Diazepam binding inhibitor: A neuropeptide located in selected neuronal populations of rat brain Science, 229 179–182.

    PubMed  CAS  Google Scholar 

  • Asano T. and Ogasawara N. (1980) Solubilisation of γ-aminobutyric acid receptor from rat brain. Life Sci 26, 1131–1137.

    PubMed  CAS  Google Scholar 

  • Asano T. and Ogasawara N. (1981) Soluble gamma-aminobutyric acid and benzodiazepine receptors from rat cerebral cortex. Life Sci. 29, 193–200.

    PubMed  CAS  Google Scholar 

  • Baraldi M., Guidotti A, Schwartz J. P., and Costa E. (1979) GABA receptors in clonal cell lines: A model for study of benzodiazepine action at molecular level. Science 205, 821–823

    PubMed  CAS  Google Scholar 

  • Battersby M. K, Richards J. G, and Mohler H (1979) Benzodiazepine receptor. photoaffinity labeling and localization. Eur. J. Pharmacol 57, 277–278.

    PubMed  CAS  Google Scholar 

  • Beer B., Klepner C. A, Lippa A. S., and Squires R. F. (1978) Enhancement of 3H-diazepam binding by SQ 65396: A novel antianxiety agent. Pharmacol. Biochem. Behav. 9, 849–851.

    PubMed  CAS  Google Scholar 

  • Biggio G., Corda M. G., de Montis G., and Gessa G. L. (1980) Differential Effects of Kainic Acid on Benzodiazepine Receptors, GABA Receptors, and GABA-Modulin in the Cerebellar Cortex, in Receptors fog Neurotransmitters and Peptide Hormones. (Pepeu G., Kuhar M. J., and Enna S. J., eds.), pp. 265–270, Raven, New York.

    Google Scholar 

  • Biscoe T. J, Fry J. P, Martin I. L., and Rickets C. (1981) Binding of GABA and benzodiazepine receptor ligands in the spinal cord of the spastic mouse. J. Physiol. (Lond.) 317, 32-33P.

    Google Scholar 

  • Biscoe T. J., Fry J. P., and Rickets C. (1984) Autoradiography of benzodiazepine receptor binding in the central nervous system of the normal C57BL6J mouse J. Physiol. (Lond ) 352, 495–508.

    CAS  Google Scholar 

  • Blair T. and Webb G A. (1977) Electronic factors in the structure-activity relationship of some 1,4-benzodiazepine-2-ones. J Med. Chem. 20, 1206–1210

    PubMed  CAS  Google Scholar 

  • Blanchard J. C, Boireau A, Garret C., and Joulou L. (1979) In vitro and in vivo inhibition by zopiclone of benzodiazepine binding to rodent brain receptors. Life Sci. 24, 2417–2420.

    PubMed  CAS  Google Scholar 

  • Blount J. F, Fryer R I., Gilman N W., and Todaro L J. (1983) Quinazolines and 1,4-benzodiazepines: 92. Conformational recognition of the receptor by 1,4-benzodiazepines. Mol Pharmacol. 24, 425–428.

    PubMed  CAS  Google Scholar 

  • Braestrup C., Albrechtsen R., and Squires R F. (1977) High densities of benzodiazepine receptors in human cortical areas Nature (Lond) 269, 702–704.

    CAS  Google Scholar 

  • Braestrup C., Honore T., Nielsen M., Petersen E. N., and Jensen L. J (1984) Ligands for benzodiazepine receptors with positive and negative efficacy. Biochem. Pharmacol. 33, 859–862.

    PubMed  CAS  Google Scholar 

  • Braestrup C. and Nielsen M. (1978) Ontogenetic development of benzodiazepine receptors in the rat brain. Brain Res. 147, 170–173.

    PubMed  CAS  Google Scholar 

  • Braestrup C. and Nielsen M. (1980) Multiple benzodiazepine receptors. Trends Neurosci. 3, 301–303.

    CAS  Google Scholar 

  • Braestrup C and Nielsen M. (1981a) 3H-propyl β-carboline-3-carboxylate as a selective radioligand for the Bz1 benzodiazepine receptor subclass. J Neurochem. 37, 333–341.

    PubMed  CAS  Google Scholar 

  • Braestrup C. and Nielsen M (1981b) GABA reduces binding of 3H-methyl β-carboline-3-carboxylate to brain benzodiazepine receptors. Nature (Lond.) 294, 472–474.

    CAS  Google Scholar 

  • Braestrup C., Nielsen M., Biggie G., and Squires R. F. (1979) Neuronal localisation of benzodiazepine receptors in cerebellum. Neurosci Lett. 13, 219–224.

    PubMed  CAS  Google Scholar 

  • Braestrup C., Nielsen M., and Honore T. (1983) Binding of [3H]-DMCM, a convulsive benzodiazepine ligand, to rat brain membranes: Preliminary studies. J. Neurochem. 41, 454–465.

    PubMed  CAS  Google Scholar 

  • Braestrup C, Nielsen M., Skovbjerg H., and Gredal O. (1981) β-Carboline-3-Carboxylates and Benzodiazepine Receptors, in GABA and Benzodiazepine Receptors. (Costa E., Di Chiara G., and Gessa G L, eds.), pp, 147–155, Raven, New York.

    Google Scholar 

  • Braestrup C., Nissen C., Squires R. F., and Schousboe A. (1978) Lack of brain specific benzodiazepine receptors on mouse primary astroglial cultures. Neurosci. Lett 9, 45–49

    PubMed  CAS  Google Scholar 

  • Braestrup C., Schmiechen R., Neff G., Nielsen M., and Pettersen E. N (1982) Interaction of convulsive ligands with benzodiazepine receptors. Science 216, 1241–1243.

    PubMed  CAS  Google Scholar 

  • Braestrup C., and Squires R. F. (1977) Specific benzodiazepine receptors in rat brain characterised by high affinity [3H]-diazepam binding Proc. Natl. Acad. Sci USA 74, 3805–3809.

    PubMed  CAS  Google Scholar 

  • Braestrup C and Squires R F (1978) Brain specific benzodiazepine receptor. Brit. J Psychiatry. 133, 249–260

    CAS  Google Scholar 

  • Brown C. L. and Martin I. L. (1982) Photoaffinity labeling of the benzodiazepine receptor does not occlude the βCCE binding site Brit. J. Pharmacol. 77, 312P.

    Google Scholar 

  • Brown C L. and Martin I L (1984a) Autoradiographic localization of benzodiazepine receptors in the rat pituitary gland. Eur. J Pharmacol. 102, 563–564

    PubMed  CAS  Google Scholar 

  • Brown C. L. and Martin I. L (1984b) Photoaffinity labeling of the benzodiazepine receptor compromises the recognition site but not its effector mechanism J. Neurochem. 43, 272–273.

    PubMed  CAS  Google Scholar 

  • Brown C. L. and Martin I. L. (1984c) Kinetics of [3H]-Ro 15-1788 binding to membrane-bound rat brain benzodiazepine receptors. J. Neurochem 42, 918–923

    PubMed  CAS  Google Scholar 

  • Butcher H. J., Chananont P, Hamor T. A, and Martin I L (1984) Structure activity relationships in a series of 5-phenyl-1,4-benzodiazepines. Proc. 8th Int Symp Med Chem, Uppsala, Sweden.

    Google Scholar 

  • Candy J. M and Martin I. L (1979a) Is the benzodiazepine receptor coupled to a chloride anion channel? Nature (Lond.) 280, 172–173

    CAS  Google Scholar 

  • Candy J M. and Martin I L (1979b) The postnatal development of the benzodiazepine receptor in the cerebral cortex and cerebellum of the rat. J Neurochem 32, 655–658

    PubMed  CAS  Google Scholar 

  • Chan C Y., Gibbs T T, Borden L. A., and Farb D. H (1983) Multiple embryonic benzodiazepine binding sites: evidence for functionality Life Sci 33, 2061–2069.

    PubMed  CAS  Google Scholar 

  • Chang L. R and Barnard E A (1982) The benzodiazepine/GABA receptor complex. molecular size in brain synaptic membranes and in solution. J Neurochem 39, 1507–1518.

    PubMed  CAS  Google Scholar 

  • Chang R. S. L. and Snyder S H (1978) Benzodiazepine receptors labeling in intact animals with [3H]-flunitrazepam. Eur J Pharmacol 48, 213–218.

    PubMed  CAS  Google Scholar 

  • Chang R. S L., Tran V. T, and Snyder S. H. (1980) Neurotransmitter receptor localisations. brain lesion-induced alterations in benzodiazepine, GABA, β-adrenergic and histamine Hl-receptor binding. Brain Res. 190, 95–110

    PubMed  CAS  Google Scholar 

  • Chiu T. H., Dryden D. M., and Rosenberg H. C, (1982) Kinetics of 3H-flunitrazepam binding to membrane-bound benzodiazepine receptors. Mol. Pharmacol. 21, 57–65

    PubMed  CAS  Google Scholar 

  • Chiu T. H. and Rosenberg H. C (1983) Multiple conformational states of benzodiazepine receptors. Trends Pharmacol Sci 4, 348–350.

    CAS  Google Scholar 

  • Costa T., Rodbard D, and Pert C. (1979) Is the benzodiazepine receptor coupled to a chloride anion channel? Nature (Lond) 277, 315–317

    CAS  Google Scholar 

  • Costa T, Russell L, Pert C B, and Rodbard D (1981) Halide and γ-aminobutyric acid-induced enhancement of diazepam receptors in rat brain. Reversal by olisulfonic acid stilbene blockers of anion channels. Mol. Pharmacol. 20, 470–476.

    PubMed  CAS  Google Scholar 

  • Cowan P. J., Green A R, Nutt D J., and Martin I L. (1981) Ethyl β-carboline carboxylate lowers seizure threshold and antagonises flurazepam induced sedation in rats. Nature (Lond.) 290, 54–55

    Google Scholar 

  • Crippen G. M. (1982) Distance geometry analysis of the benzodiazepine binding site. Mol Pharmacol. 22, 11–19.

    PubMed  CAS  Google Scholar 

  • Czernik A J, Petrack B., Kalinsky H J., Psychoyos S, Cash W D, Tsai C., Rinehart R K., Granat F. R., Lovell R A., Brundish D E, and Wade R (1982) CGS 8216, receptor binding characteristics of a potent benzodiazepine antagonist Life Sci 30, 363–372.

    PubMed  CAS  Google Scholar 

  • Davis L G. and Cohen R. K (1980) Identification of an endogenous peptide ligand for the benzodiazepine receptor. Biochem Biophys Res. Commun 92, 141–148.

    PubMed  CAS  Google Scholar 

  • Davis L. G., McIntosh H, and Reker D. (1981) An endogenous ligand to the benzodiazepine receptor: preliminary evaluation of its bioactivity. Pharmacol Biochem. Behav. 14, 839–844.

    PubMed  CAS  Google Scholar 

  • Doble A. (1983) Comparative thermodynamics of benzodiazepine receptor ligand interactions in rat neuronal membranes. J. Neurochem. 40, 1605–1612.

    PubMed  CAS  Google Scholar 

  • Doble A., Martin I L, and Richards D A (1982) GABA modulation predicts biological activity of ligands for the benzodiazepine receptor. Brit. J. Pharmacol 76, 238P.

    Google Scholar 

  • Dorow R, Horowski R, Paschelke, G Amin, M, and Braestrup C. (1983) Severe anxiety induced by FG7142, a β-carboline ligand for benzodiazepine receptors. Lancet ii, 98–99

    Google Scholar 

  • Duka T., Hollt V., and Herz A. (1979) In viva receptor occupation by benzodiazepines and correlation with pharmacological effect Brain Res. 179, 147–156.

    PubMed  CAS  Google Scholar 

  • Fernholm B, Nielsen M., and Braestrup C. (1979) Absence of brain specific benzodiazepine receptors in cyclostomes and elasmobranchs. Camp. Biochem. Physiol C62, 209–211

    Google Scholar 

  • Franklin T. J. (1980) Binding energy and the activation of hormone receptors Biochem Pharmacol 29, 853–856.

    PubMed  CAS  Google Scholar 

  • Fritz L. C., Wang C. C., and Gorio A. (1979) Avermectin Bla irreversibly blocks postsynaptic potential at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci USA 76, 2062–2066.

    PubMed  CAS  Google Scholar 

  • Fryer R. I (1983) Benzodiazepine ligand-receptor interactions, in The Benzodiazepines. From Molecular Biology to Clinical Practice, (Costa E., ed), pp 7–20, Raven, New York.

    Google Scholar 

  • Fryer R. I., Gilman N. W., Madison V., and Walser A. (1984) Conformational differences for agonists and antagonists at the benzodiazepine receptor. Proc 8th Int. Symp Med. Chem. Uppsala, Sweden.

    Google Scholar 

  • Fujimoto M., Hirai K, and Okabayashi T. (1982) Comparison of the effects of GABA and chloride ion on the affinities of ligands for the benzodiazepine receptor. Life Sci 30, 51–57.

    PubMed  CAS  Google Scholar 

  • Fuxe K, Koehler C, Agnati L F, Andersson K, Oegren S O., Eneroth P., Perez de la Mora M., Karobath M., and Krogsgaard-Larsen P (1981) GABA and benzodiazepine receptors Studies on their Localisation in the Hippocampus and Their Interaction With Central Dopamine Neurons in the Rat Brain, in. GABA and Benzodiazepine Receptors (Costa E, Di Chiara G., and Gessa G. L., eds.), pp. 61–76, Raven, New York

    Google Scholar 

  • Gallager D. W., Mallorga P, Oertel W., Henneberry R, and Tallman J (1981) 3H-diazepam binding in mammalian central nervous system. a pharmacological characterization. J. Neurosci 1, 218–225

    PubMed  CAS  Google Scholar 

  • Gavish M., Chang R S L, and Snyder S. H (1979) Solubilisation of histamine H-l, GABA and benzodiazepine receptors. Life Sci. 25, 783–790.

    PubMed  CAS  Google Scholar 

  • Gavish M. and Snyder S. H (1980) Soluble benzodiazepine receptors GABAergic regulation. Life Sci 26, 579–582

    PubMed  CAS  Google Scholar 

  • Gee K. W. and Yamamura H. I. (1982) Differentiation of benzodiazepine receptor agonist and antagonist sparing of 3H-benzodiazepine antagonist binding following the photolabeling of benzodiazepine receptors. Eur. J Pharmacol. 82, 239–241

    PubMed  CAS  Google Scholar 

  • Gilli G., Borea P. A, Bertolasi V., and Sacerdoti M. (1977) Stereochemical and electronic properties of benzodiazepines Correlation with their anti-convulsant activity Proc 4th Eur. Crystallography Meet Oxford, p. 38.

    Google Scholar 

  • Gilli G. (1984) Crystal structure and properties of molecules Acta Cryst A40 suppl. C-6

    Google Scholar 

  • Guidotti A., Ebstein B., and Costa E. (1981) Purification and characterisation of an endogenous brain peptide that competes with 3H-diazepam binding Soc Neurosci. Abs. 7, 634.

    Google Scholar 

  • Guidotti A., Forchetti C. M, Corda M G., Konkel D, Bennett C. D, and Costa E. (1983) Isolation, characterisation, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 80, 3531–3535.

    PubMed  CAS  Google Scholar 

  • Guidotti A., Toffano G., and Costa E. (1978) An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain. Nature (Lond.) 275, 553–555.

    CAS  Google Scholar 

  • Haefely W. (1978) Central actions of benzodiazepines. general introduction. Brit. J Psychiatry 133, 231–238.

    CAS  Google Scholar 

  • Haefely W. (1984) Actions and Interactions of Benzodiazepine Agonists and Antagonists at GABAergic Synapses, in Actions and lnteractions of GABA and Benzodiazepines, (Bowery N. G., ed.), pp. 263–285, Raven, New York.

    Google Scholar 

  • Hirsch J. D. (1982) Photolabeling of benzodiazepine receptors spares [3H]propyl β-carboline binding. Pharmacol Biochem. Behav. 16, 245–248.

    PubMed  CAS  Google Scholar 

  • Honore T., Nielsen M., and Braestrup C. (1983) Binding of 3H-DMCM to benzodiazepine receptors; chloride-dependent allosteric mechanisms. J. Neural. Transm. 58, 83–98.

    PubMed  CAS  Google Scholar 

  • Honore T., Nielsen M., and Braestrup C. (1984) Barbiturate shift as a tool for determination of efficacy of benzodiazepine receptor ligands. Eur. J. Pharmacol. 16, 245–248

    Google Scholar 

  • Huang A., Barker J. L., Paul S. M., Moncada V., and Skolnick P. (1980) Characterisation of benzodiazepine receptors in primary cultures of fetal mouse brain and spinal cord neurons. Brain Res. 190, 485–491.

    PubMed  CAS  Google Scholar 

  • Hunkeler W., Mohler H., Pieri L, Polc P., Bonetti E. P., Cumin R., Schaffner R., and Haefely W. (1981) Selective antagonists of benzodiazepines. Nature (Lond.) 290, 514–516.

    CAS  Google Scholar 

  • Jensen L. H., Peteresen E. N, and Braestrup C. (1983) Audiogenic selzures in DBA/2 mice discriminate sensitively between low efficacy benzodiazepine receptor agonists and inverse agonists Life Sci 33, 393–399.

    PubMed  CAS  Google Scholar 

  • Johnson R. W. and Yamamura H. I. (1979) Photoaffinity labeling of the benzodiazepine receptor in bovine cerebral cortex Life Sci 25, 1613–1620.

    PubMed  CAS  Google Scholar 

  • Karobath M. and Supavilai P. (1982) Distinction of benzodiazepine agonists from antagonists by photoaffinity labeling of benzodiazepine receptors in vitro Neurosci Lett. 31, 65–69.

    PubMed  CAS  Google Scholar 

  • Kataoka Y., Gutman Y., Guidotti A., Panula P. Wroblewski J., Cosenza-Murphy D., Wu J Y., and Costa E. (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 81, 3218–3222.

    PubMed  CAS  Google Scholar 

  • Kochman R. L. and Hirsch J. D. (1982) Thermodynamic changes associated with benzodiazepine and alkyl β-carboline-3-carboxylate binding to rat brain homogenates Mol. Pharmacol. 22, 335–341

    PubMed  CAS  Google Scholar 

  • Kuhar M. J. (1978) Histochemical Localisation of Neurotransmitter Receptors, in: Neurotransmitter Receptor Binding (Yamamura H I, Enna S. J, and Kuhar M J., eds), pp 113–126, Raven, New York

    Google Scholar 

  • Lakoski J M., Aghajanian G. K., and Gallager D W. (1983) Interaction of histamine H2-receptor antagonists with GABA and benzodiazepine binding sites in the CNS Eur. J Pharmacol. 88, 241–245.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg F, Snowman A, and Olsen R W (1980) Barbiturate receptors are coupled to benzodiazepine receptors. Proc Nat1 Acad Sci USA 77, 7468–7472

    CAS  Google Scholar 

  • Leeb-Lundberg F., Snowman A., and Olsen R. W (1981) Perturbation of benzodiazepine receptor binding by pyrazolopyridines involves picrotoxinin/barbiturate receptor sites. J Neurosci 1, 471–477

    PubMed  CAS  Google Scholar 

  • Levy R. A (1977) The role of GABA in primary afferent depolarization Prog. Neurobiol. 9, 211–267

    PubMed  CAS  Google Scholar 

  • Lippa A. S., Critchett D. J., Sano M. C, Klepner C. A., Greenblat F. N, Coupet J., and Beer B (1979) Benzodiazepine receptors cellular and behavioural characteristics. Pharmacol Biochem. Behav 10, 831–843

    PubMed  CAS  Google Scholar 

  • Lippa A. S., Sano M C., Coupet J, Klepner C A and Beer B. (1978) Evidence that benzodiazepine receptors reside on cerebellar Purkinje cells Studies with “nervous” mutant mice Life Sci. 23, 2213–2218

    PubMed  CAS  Google Scholar 

  • Lucek R W. and Coutinho C. B (1976) The role of substituents in the hydrophobic binding of the 1,4-benzodiazepines by human plasma proteins. Mol. Pharmacol 12, 612–619

    PubMed  CAS  Google Scholar 

  • Lucek R. W., Garland W A., and Dairman W (1979) CNDO/2 molecular orbital study of selected 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones Fed Proc 38, 541.

    Google Scholar 

  • Mackerer C R. and Kochman R. L. (1978) Effects of cations and anions on the binding of [3H]-diazepam to rat brain. Proc Soc. Exp Biol Med 158, 393–397

    PubMed  CAS  Google Scholar 

  • Mallorga P., Hamburg M., Tallman J F., and Gallager D W (1980) Ontogenetic changes in GABA modulation of brain benzodiazepine binding Neuropharmacology 19, 405–408.

    PubMed  CAS  Google Scholar 

  • Mann E. and Enna S J (1980) Phylogenetic distribution of bicuculline sensitive γ-aminobutyric acid (GABA) receptor binding Brain Res 184, 367–373

    PubMed  CAS  Google Scholar 

  • Marangos P. J, Patel J., Boulenger J P., and Clark-Rosenberg R (1982) Characterisation of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5-4864 Mol. Pharmacol 22, 26–32.

    PubMed  CAS  Google Scholar 

  • Martin I. L (1980) Endogenous ligands for benzodiazepine receptors Trends Neurosci 3, 299–301

    CAS  Google Scholar 

  • Martin I. L, Brown C L., and Doble A. (1983) Multiple benzodiazepine receptors: structures in the brain or structures in the mind? A critical review. Life Sci 32, 1925–1933

    PubMed  CAS  Google Scholar 

  • Martin I L. and Candy J. M (1978) Facilitation of benzodiazepine binding by sodium chloride and GABA. Neuropharmacology 17, 993–998

    PubMed  CAS  Google Scholar 

  • Martin I. L. and Candy J. M. (1980) Facilitation of specific benzodiazepine binding in rat brain membrane fragments by a number of anions. Neuropharmacology 19, 175–179.

    PubMed  CAS  Google Scholar 

  • Martini C., Lucacchini A., Ronca G., Hrelia S., and Rossi C. A. (1982) Isolation of putative benzodiazepine receptors from rat brain membranes by affinity chromatography. J. Neurochem. 38, 15–19.

    PubMed  CAS  Google Scholar 

  • Massotti M and Guidotti A, (1980) Endogenous regulators of benzodiazepine recognition sites. Life Sci. 27, 847–854.

    PubMed  CAS  Google Scholar 

  • Mathews G. and Wickelgren W. O. (1979) Glycine, GABA and synaptic inhibition of reticulospinal neurones of lamprey. J Physiol (Lond) 293, 393–415

    Google Scholar 

  • McCarthy G D. and Harden T K. (1981) Identification of two benzodiazepine binding sites on cells cultured from rat cerebral cortex. J Pharmacol. Exp. Ther 216, 183–191

    PubMed  CAS  Google Scholar 

  • Meiners B. A and Salama A. J (1982) Enhancement of benzodiazepine and GABA binding by the novel anxiolytic tracazolate. Eur. J Pharmacol 78, 315–322.

    PubMed  CAS  Google Scholar 

  • Mitchell P R and Martin I L. (1980) Ethyl β-carboline-3-carboxylate antagonises the effect of diazepam on a functional GABA receptor. Eur. J Pharmacol 68, 513–514.

    PubMed  CAS  Google Scholar 

  • Mitchell P. R. and Wilson L. (1984) Investigation of the effects of muscimol on different components of 3H-propyl β-carboline-3-carboxylate binding to rat hippocampal and cerebellar membranes. Eur j Pharmacol. 97, 315–319.

    PubMed  CAS  Google Scholar 

  • Mohler H (1981) Benzodiazepine receptors are there endogenous ligands in brain? Trends Pharmacol Sci. 1, 116–119

    Google Scholar 

  • Mohler H (1982) Benzodiazepine receptors: differential interaction of benzodiazepine agonists and antagonists after photoaffinity labeling with flunitrazepam. Eur J. Pharmacol. 80, 435–436.

    PubMed  CAS  Google Scholar 

  • Mohler H., Battersby M. K., and Richards J G. (1980) Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc Natl. Acad Scl. USA 77, 1666–1670.

    CAS  Google Scholar 

  • Mohler H. and Okada T. (1977) Benzodiazepine receptor. demonstration in the central nervous system. Science 198, 849–851.

    PubMed  CAS  Google Scholar 

  • Mohler H. and Okada T (1978) The benzodiazepine receptor in normal and pathological human brain. Brit J Psychiatry 133, 261–268.

    CAS  Google Scholar 

  • Mohler H. and Richards J G (1981) Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature (Lond.) 294, 763–765.

    CAS  Google Scholar 

  • Muller W E., Schlafer U, and Wollert U. (1978) Benzodiazepine receptor binding in rat spinal cord membrane Neurosci. Lett 9, 239–243.

    PubMed  CAS  Google Scholar 

  • Nielsen M. and Braestrup C. (1980) Ethyl β-carboline-3-carboxylate shows differential benzodiazepine receptor interaction Nature (Lond.) 286, 606–607.

    CAS  Google Scholar 

  • Nielsen M, Braestrup C., and Squires R. F. (1978) Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors. an investigation of 18 vertebrate and 5 invertebrate species. Brain Res 141, 342–346.

    PubMed  CAS  Google Scholar 

  • Nielsen M., Schou H, and Braestrup C (1981) [3H]-Propyl β-carboline-3-carboxylate binds specifically to brain benzodiazepine receptors. J. Neurochem 36, 276–285.

    PubMed  CAS  Google Scholar 

  • Nutt D J., Cowen P J., and Little H. J (1982) Unusual interactions of benzodiazepine receptor antagonists. Nature (Lond.) 295, 436–438.

    CAS  Google Scholar 

  • Oakley N. R. and Jones B. J. (1982) Differential pharmacological effects of β-carboline-3-carboxylic acid esters Neuropharmacology 21, 587–589

    PubMed  CAS  Google Scholar 

  • Oakley N. R., Jones B. J, and Straughan D. W. (1984) The benzodiazepine receptor ligand CL 218872 has both anxiolytic and sedative properties in rodents. Neuropharmacology 23, 797–802

    PubMed  CAS  Google Scholar 

  • Olsen R W. (1981) GABA-benzodiazepine-barbiturate receptor interactions J. Neurochem 37, 1–13

    PubMed  CAS  Google Scholar 

  • Palacios J.M and Kuhar M J (1982) Ontogeny of high affinity GABA and benzodiazepine receptors in rat cerebellum. an autoradiographic study. Devel Brain Res. 2, 531–539.

    Google Scholar 

  • Palacios J. M, Niehoff D L., and Kuhar M J. (1979) Ontogeny of GABA and benzodiazepine receptors. effects of Triton X-100, bromide and muscimol. Brain Res. 179, 390–395.

    PubMed  CAS  Google Scholar 

  • Palacios J. M., Niehoff D. L., and Kuhar M. J. (1981) Receptor autoradiography with tritium-sensitive film. potential for computerised densitometry. Neurosci. Lett 25, 101–105.

    PubMed  CAS  Google Scholar 

  • Penney J B, Frey K, and Young A B (1981) Quantitative autoradiography of neurotransmitter receptors using tritium-sensitive film. Eur. J Pharmacol. 72, 421–422.

    PubMed  CAS  Google Scholar 

  • Petersen E. N. and Buus-Lassen J (1981) A water-lick conflict paradigm using drug-experienced rats. Psychopharmacology 75, 236–239.

    PubMed  CAS  Google Scholar 

  • Pole P, Bonetti E. P., Schaffner R., and Haefely W (1982) A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, β-carbolines and phenobarbitone Naunyn Schmiedeberg’s Arch. Pharmacol 321, 260–264.

    Google Scholar 

  • Prado de Carvalho L., Grecksch G, Chapouthier G., and Rossier J. (1983) Anxiogenic and non-anxiogenic benzodiazepine antagonists. Nature (Lond) 301, 64–66

    Google Scholar 

  • Quast U and Mahlmann H. (1982) Interaction of 3H-flunitrazepam with the benzodiazepine receptor. evidence for a ligand-induced conformation change. Biochem Pharmacol 31, 2761–2768.

    PubMed  CAS  Google Scholar 

  • Quast U, Mahlmann H., and Vollmer K. O. (1982) Temperature dependence of the benzodiazepine-receptor interaction. Mol Pharmacol 22, 20–25.

    PubMed  CAS  Google Scholar 

  • Regan J. W., Roeske W. R., and Yamamura H. I. (1980) The benzodiazepine receptor. Its development and its modulation by γ-aminobutyric acid. J. Pharmacol. Exp Ther. 212, 137–143.

    PubMed  CAS  Google Scholar 

  • Rice K. C., Brossi A., Tallman J., Paul S. M., and Skolnick P. (1979) Irazepine, a non-competitive, irreversible inhibitor of 3H-diazepam binding to benzodiazepine receptors. Nature (Lond.) 278, 854–855

    CAS  Google Scholar 

  • Richards J. G, Schlumpf M., Lichtensteiger W., and Mohler H. (1983) Ontogeny of benzodiazepine binding sites in fetal rat brain: An in vitro autoradiographic study. Monogr. Neural. Sci. 9, 111–118.

    PubMed  CAS  Google Scholar 

  • Sarrazin M, Bourdeaux-Pontier M., and Briand C. (1976) Etude de quelques relations structure-activate de benzodiazepines. Ann. Phys. Biol Med. 9, 211–220.

    Google Scholar 

  • Schlumpf M., Richards J. G., Lichtensteiger W., and Mohler H. (1983) An autoradiographic study of the pre-natal development of benzodiazepine-binding sites in rat brain. J. Neurosci 3, 1478–1487.

    PubMed  CAS  Google Scholar 

  • Schmidt R. F., Vogel E, and Zimmerman M. (1967) Die Wirkung von Diazepam auf die prasynaptische Hemmung und andere Ruckenmarks reflexe. Naunyn Schmiedeberg’s Arch. Pharmacol. 258, 69–82.

    CAS  Google Scholar 

  • Schoch P., and Mohler H. (1983) Purified benzodiazepine receptor retains modulation by GABA. Eur J. Pharmacol. 95, 323–324.

    PubMed  CAS  Google Scholar 

  • Schoch P., Richards J. G., Haring P., Takacs B, Stàhli C, Staehelin T., Haefeley W and Mohler H. (1985) Co-localisation of GABAA receptors and benzodiazepine receptors in the brain by monoclonal antibodies. Nature (Lond ) 314, 168–171.

    CAS  Google Scholar 

  • Schoemaker H., Boles R. G., Horst W. D., and Yamamura H. I. (1983) Specific high affinity binding sues for [3H]-Ro 5-4864 in rat brain and kidney. J Pharmacol Exp. Ther. 225, 61–69.

    PubMed  CAS  Google Scholar 

  • Sherman-Gold R and Dudai Y. (1980) Solubilisation and properties of a benzodiazepine receptor from calf cortex. Brain Res. 198, 485–490.

    PubMed  CAS  Google Scholar 

  • Sieghart W. and Drexler G. 1983 Irreversible binding of [3H]flunitrazepam to different proteins in various brain regions. J Neurochem 41 47–55

    PubMed  CAS  Google Scholar 

  • Sieghart W. and Karobath M. (1980) Molecular heterogeneity of benzodiazepine receptors. Nature (Lond.) 286, 285–287.

    CAS  Google Scholar 

  • Sieghart W and Mayer A (1982) Postnatal development of proteins irreversibly labelled with [3H]-flunitrazepam. Neurosci. Lett. 31, 71–74.

    PubMed  CAS  Google Scholar 

  • Sieghart W. and MÓhler H. (1982) 3H-Clonazepam, like 3H-flunitrazepam, is a photoaffinity label for the central type of benzodiazepine receptors. Eur. J. Pharmacol. 81, 171–173.

    PubMed  CAS  Google Scholar 

  • Sigel E. and Barnard E. A. (1984) A γ-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their interactions. J Biol. Chem. 259, 7219–7223.

    PubMed  CAS  Google Scholar 

  • Sigel E., Mamalaki C., and Barnard E A. (1982) Isolation of a GABA receptor from bovine brain using a benzodiazepine affinity column FEBS Lett. 147, 45–48.

    PubMed  CAS  Google Scholar 

  • Sigel E., Stephenson F A, Mamalaki C., and Barnard E A (1983) A γ-aminobutyric acid/benzodiazepine receptor complex in bovine cerebral cortex. J Biol Chem 258, 6965–6971

    PubMed  CAS  Google Scholar 

  • Sjodin T., Roosdorp N, and Sjoholm I. (1976) Studies on the binding of benzodiazepines to human serum albumin by circular dichroism measurements Biochem Pharmacol. 25, 2131–2140

    PubMed  CAS  Google Scholar 

  • Skerritt J. H, Willow M., and Johnston G A. R (1982) Diazepam enhancement of low affinity GABA binding to rat brain membranes. Neurosci Lett 29, 63–66.

    PubMed  CAS  Google Scholar 

  • Skolnick P., Lock K L, Paugh B, Marango F., Windsor R, and Paul S (1980) Pharmacologic and behavioural effects of EMD 28422, a novel purine which enhances [3H]-diazepam binding to brain benzodiazepine receptors Pharmacol. Biochem. Behav. 12, 685–689.

    PubMed  CAS  Google Scholar 

  • Skolnick P., Paul S, Crawley J., Lewm E, Lippa A, Clody D, Irmscher K., Saiko O, and Minck K (1983) Antagonism of the anxiolytic action of diazepam and chlordiazepoxide by the novel imidazopyridines EMD 39593 and EMD 41717 Eur J Pharmacol 88, 319–327

    PubMed  CAS  Google Scholar 

  • Skolnick P., Schweri M. M., Willlams E. F, Moncada V. Y, and Paul S. M (1982) An in vitro binding assay which differentiates benzodiazepine agonists and antagonists Eur J. Pharmacol. 78, 133–136.

    PubMed  CAS  Google Scholar 

  • Skolnick P., Syapin P. J., Paugh B. A, and Paul S. M (1979) Reduction in benzodiazepine receptors associated with Purkinje cell degeneration in nervous mutant mice. Nature (Lond ) 277, 397–399.

    CAS  Google Scholar 

  • Speth R. C, Wastek C J, Johnson P C., and Yamamura H I. (1978) Benzodiazepine binding in human brain demonstration using 3H-flunitrazepam. Life Sci 22, 859–866

    PubMed  CAS  Google Scholar 

  • Speth R C., Wastek G W, and Yamamura H. I (1979) Benzodiazepine receptors: temperature dependence of 3H-flunitrazepam binding. Life Sci 24, 351–358.

    PubMed  CAS  Google Scholar 

  • Speth R. C. and Yamamura H. I. (1979) Benzodiazepine receptors alterations in mutant mouse cerebellum. Eur. J. Pharmacol. 54, 397–399.

    PubMed  CAS  Google Scholar 

  • Squires R. F, Benson D. I., Braestrup C., Coupet J., Klepner C A., Myers V, and Beer B. (1979) Some properties of brain specific benzodiazepine receptors New evidence for multiple receptors Pharmacol Biochem. Behav 10, 825–830

    PubMed  CAS  Google Scholar 

  • Squires R. F and Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature (Lond.) 266, 732–734

    CAS  Google Scholar 

  • Squires R F, Casida J E, Richardson N M., and Saederup E (1983) [35S]-t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23, 326–336.

    PubMed  CAS  Google Scholar 

  • Stephenson F. A. and Olsen R. W. (1982) Solubilisation by CHAPS detergent of barbiturate-enhanced benzodiazepine-GABA receptor complex J. Neurochem 39, 1579–1586.

    PubMed  CAS  Google Scholar 

  • Sternbach L. H. (1978) The benzodiazepine story. Prog. Drug Res 22, 229–266.

    PubMed  CAS  Google Scholar 

  • Sternbach L H., Randall L. O., Banziger R, and Lehr H (1968) in Structure Activity Relationships in the 1,4-Benzodiazepine Series, Drugs Affecting the Central Nervous System. vol. 2, (BurgerA., ed.), pp. 237–264. Marcel Dekker,New Y

    Google Scholar 

  • Study R. E. and Barker J L. (1981) Diazepam and (-)-pentobarbital. fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc. Natl. Acad Sci. USA 78, 7180–7184.

    PubMed  CAS  Google Scholar 

  • Sunjit V., Lisini A., Sega A, Kovac T., Kajfez F., and Rustic B (1979) Conformation of 7-chloro-5-phenyl-d5-3(S)-methyl-dihydro-l,-4-benzodiazepin-2-one in solution. J Heterocyclic Chem. 16, 757–761

    Google Scholar 

  • Supavilai P. and Karobath M. (1979) Stimulation of benzodiazepine receptor binding by SQ 20009 is chloride-dependent and picrotoxin-sensitive. Eur. J Pharmacol. 60, 111–113

    PubMed  CAS  Google Scholar 

  • Supavilai P. and Karobath M. (1980) Heterogeneity of benzodiazepine receptors in rat cerebellum and hippocampus. Eur. J. Pharmacol 64, 91–93.

    PubMed  CAS  Google Scholar 

  • Supavilai P. and Karobath M. (1981) Action of pyrazolpyridines as modulators of 3H-flunitrazepam binding to the GABA/benzodiazepine receptor complex in the cerebellum. Eur. J Pharmacol. 70, 183–193.

    PubMed  CAS  Google Scholar 

  • Supavilai P and Karobath M (1984) [35S]-t-butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex J. Neurosci. 4, 1193–1200.

    PubMed  CAS  Google Scholar 

  • Syapm P. J. and Skolnick P (1979) Characterisation of benzodiazepine binding sites in cultured cells of neural origin. J Neurochem. 32, 1047–1051.

    Google Scholar 

  • Takeuchi A and Takeuchi N. (1975) The structure-activity relationship for GABA and related compounds in the crayfish muscle. Neuropharmacology 14, 627–634

    PubMed  CAS  Google Scholar 

  • Tallman J. F., Thomas J. W, and Gallager D. W. (1978) GABAergic modulation of benzodiazepine binding site sensitivity Nature (Lond.) 274, 383–385

    CAS  Google Scholar 

  • Tallman J. F, Thomas J. W., and Gallager D. W (1979) Identification of diazepam binding in intact animals. Life Sci. 24, 873–880.

    PubMed  CAS  Google Scholar 

  • Tenen S S., and Hirsch J D (1980) Antagonism of diazepam activity by β-carboline-3-carboxylic acid ethyl ester. Nature (Lond.) 288, 609–610.

    CAS  Google Scholar 

  • Thomas J. W. and Tallman J. F. (1981) Characterisation of photoaffinity labelling of benzodiazepine binding sites. J. Biol. Chem 256, 9838–9842.

    PubMed  CAS  Google Scholar 

  • Ticku N. K. and Olsen R W. (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci. 22, 1643–1652.

    PubMed  CAS  Google Scholar 

  • Toll L., Keys C., Spangler D, and Loew G (1984) Computer-assisted determination of benzodiazepine receptor heterogeneity. Eur. J Pharmacol 99, 203–209

    PubMed  CAS  Google Scholar 

  • Unnerstall J. R, Niehoff D. L, Kuhar M. J, and Palacios J M (1982) Quantitative receptor autoradiography using 3H-Ultrofilm. application to multiple benzodiazepine receptors J Neurosci. Methods 6, 59–73.

    PubMed  CAS  Google Scholar 

  • Weiland G. A., Minneman D. P., and Molinoff P. B. (1979) Fundamental differences between the molecular interaction of agonists and antagonists with the β-adrenergic receptor Nature (Lond) 281, 114–117

    CAS  Google Scholar 

  • White W. F., Dichter M. A, and Snodgrass S. R. (1981) Benzodiazepine binding and interactions with the GABA receptor complex in living cultures of rat cerebral cortex. Brain Res 215, 162–176.

    PubMed  CAS  Google Scholar 

  • Williams E F, Rice K. C., Paul S M, and Skolnick P. (1980) Heterogeneity of benzodiazepine receptors in the central nervous system demonstrated with kenazepine, an alkylating benzodiazepine J. Neurochem. 35, 591–597

    PubMed  CAS  Google Scholar 

  • Williams M. and Risley E. A. (1979) Enhancement of binding to rat brain membranes in vitro by SQ 20009, a novel anxiolytic agent, gamma-aminobutyric acid and muscimol. Life Sci 24, 833–841.

    PubMed  CAS  Google Scholar 

  • Williams M and Risley E A (1982) Interactions of avermectins with [3H]β-carboline-3-carboxylate ethyl ester and 3H-diazepam binding sites in rat brain cortical membranes. Eur J Pharmacol 77, 307–312

    PubMed  CAS  Google Scholar 

  • Williams M., and Risley E A. (1984) Ivermectin interactions with benzodiazepine receptors in rat cortex and cerebellum in vitro. J Neurochem 42, 745–753.

    PubMed  CAS  Google Scholar 

  • Williams M. and Yarbrough G. G. (1979) Enhancement in in vitro binding and some of the pharmacological properties of diazepam by a novel anthelmintic agent avermectin B1a. Eur. J Pharmacol. 56, 273–276.

    PubMed  CAS  Google Scholar 

  • Williamson M J, Paul S M., and Skolnick P. (1978) Labelling of benzodiazepine receptors in vivo. Nature (Lond ) 275, 551–553.

    CAS  Google Scholar 

  • Wong D T., Rathbun R. C, Bymaster F. P., and Lacefield W. B. (1983) Enhanced binding of radioligands to receptors of γ-aminobutyric acid and benzodiazepines by a new anti-convulsant agent, LY81067 Life Sci 33, 917–923.

    PubMed  CAS  Google Scholar 

  • Woolf J. H. and Nixon J C (1981) Endogenous effector of the benzoidazepine binding site. Purification and characterisation Biochemistry 20, 4263–4269

    PubMed  CAS  Google Scholar 

  • Yokoyama N., Ritter B., and Neubert A. D. (1982) α-Arylpyrazolo-[4,3-c]quinolin-3-ones. novel agonist, partial agonist and antagonist of benzodiazepines. J. Med. Chem. 25, 337–339

    PubMed  CAS  Google Scholar 

  • Young W. S. III and Kuhar M J (1979) Autoradiographic localisation of benzodiazepine receptors in the brains of humans and animals Nature (Lond.) 280, 393–395.

    Google Scholar 

  • Young W. S. III and Kuhar M. J, (1980) Radiohistochemical localisation of benzodiazepine receptors in rat brain. J. Pharmacol Exp. Ther 212, 337–346.

    PubMed  CAS  Google Scholar 

  • Yousufi M. A. K., Thomas J W, and Tallman J F (1979) Solubilisation of benzodiazepine binding site from rat cortex Life Sci 25, 463–470

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Martin, I.L. (1986). The Benzodiazepine Receptor. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:415

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:415

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics