Advertisement

Serotonin Receptors

  • Stephen J. Peroutka
Part of the Neuromethods book series (NM, volume 4)

Abstract

Since the middle of the nineteenth century, physiologists have been aware of an endogenous vasoconstrictor substance. Often referred to as “vasotonin,” the factor was present in the serum of clotted blood. (1948) succeeded in isolating the compound and named it “serotonin.” The chemical structure was soon found to be 5-hydroxytryptamine (5-HT). Simultaneously and independently, Italian scientists were studying a substance found in high concentrations in enterochromaffin cells of the intestinal mucosa that was also eventually found to be 5-HT (Erpsamer and Asero, 1952). The synthetic production of 5-HT (Hamlin and Fischer, 1951) led to an explosion of research into the physiologic function of this compound.

Keywords

Adenylate Cyclase Radioligand Binding Study Forepaw Treading Canine Basilar Artery Radioligand Binding Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn H. S. and Makman M. H (1978) Serotonin sensitive adenylate cyclase activity in monkey anterior limbic cortex antagonism by molindone and other antipsychotic drugs Life Sci 23, 507–512.PubMedGoogle Scholar
  2. Allen G. S and Banghart S. B (1979) Cerebral arterial spasm. Part 9. In vitro effects of nifedipine on serotonin-, phenylephrine-, and potassium-induced contractions of canine basilar and femoral arteries Neurosurg. 4, 37–42Google Scholar
  3. Allen G. S., Gross C J., Henderson L. M, and Chou S. N. (1976) Cerebral arterial spasm. Part 4: In vitro effects of temperature, serotonin, analogues, large nonphysiologic concentrations of serotonin and extracellular calcium and magnesium on serotonin-induced contractions of the canine basilar artery. J Neurosurg 44, 585–593.PubMedGoogle Scholar
  4. Allen G. S., Henderson L. M., Chou S N., and French L A. (1974) Cerebral arterial spasm Part 1. In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries J. Neurosurg. 40, 433–441PubMedGoogle Scholar
  5. Apperley E., Feniuk W., Humphrey P. P A, and Levy G. P (1980) Evidence for two types of excitatory receptor for 5-hydroxytryptamine in dog isolated vasculature, Brit J Plzarmacol. 68, 215–224.Google Scholar
  6. Barbaccia M L., Brunello N., Chuang D. M., and Costa E. (1983) Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. J. Neurochem. 40, 1671–1679PubMedGoogle Scholar
  7. Bennett J L. and Aghalanian G. K (1974) D-LSD binding to brain homogenates. possible relationship to serotonin receptors Life Sci. 15, 1935–1944Google Scholar
  8. Bennett Jr, J P and Snyder S H (1975) Stereospecific binding of d-lysergic acid diethylamide (LSD) to brain membranes relationship to serotonin receptors. Brain Res. 94, 523–544PubMedGoogle Scholar
  9. Bennett Jr, J. P. and Snyder S H. (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes. relationship to postsynaptic serotonin receptors. Mol Pharmacol 12, 373–389PubMedGoogle Scholar
  10. Berry-Kravis E. and Dawson G (1983) Characterization of an adenylate cyclase-linked serotonin (5-HT1) receptor in a neuroblastoma × brain explant hybrid cell line (NCB-20). J. Neurochem 40, 977–985PubMedGoogle Scholar
  11. Biegon A., Rainbow T C., and McEwen B. S (1982) Quantitative autoradiography of serotonin receptors in the rat brain. Brain Res. 242, 197–204.PubMedGoogle Scholar
  12. Bohr D. F, Goulet P. L., and Taquini A C. (1961) Direct tension recording from smooth muscle of resistance vessels from various organs Angiology 12, 478–485PubMedGoogle Scholar
  13. Bradley P. B., Humphrey P. P A., and Williams R H. (1983) Are vascular ′d′ and ′5-HT2′ receptors for 5-hydroxytryptamme the same? Brit j Pharmacol 79, 295PGoogle Scholar
  14. Cerrito F and Raiteri M. (1979) Serotonin release is modulated by pre-synaptic autoreceptors Eur. J. Pharmacol 57, 427–430.PubMedGoogle Scholar
  15. Cohen M L, Mason N, Wiley K. S, and Fuller R W. (1983) Further evidence that vascular serotonin receptors are of the 5-HT2 type. Biochem. Pharmacol. 32, 567–570PubMedGoogle Scholar
  16. Cohen M. L, Fuller R W., and Wiley K. S. (1981) Evidence for 5-HT2 receptors mediating contraction in vascular smooth muscle. J Pharmacol. Exp. Ther. 218, 421–425PubMedGoogle Scholar
  17. Colpaert F. C and Janssen P A. J (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacol 22, 993–1000.Google Scholar
  18. Cortes R, Palacios J M., and Pazos A. (1984) Visualisation of multiple serotonin receptors in the rat brain by autoradiography Brit J. Pharmacol 82(suppl), 202P.Google Scholar
  19. Coughlin S. R, Moskowitz M A., and Levine L. (1984) Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem. Pharmacol. 33, 692–694.PubMedGoogle Scholar
  20. Cox B and Ennis C. (1982) Characterization of 5-hydroxytryptaminergic autoreceptors in the rat hypothalamus. j Pharm. Pharmacol 34,438–441.PubMedGoogle Scholar
  21. Creese I. and Snyder S H (1978) 3H-Spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus. Eur J. Pharmacol 49, 201–202.PubMedGoogle Scholar
  22. Curro F A., Greenberg S., Verbeuren T J., and Vanhoutte P. M. (1978) Interaction between alpha adrenergic and serotonergic activation of canine saphenous veins J Pharmacol. Exp Ther 207, 936–949PubMedGoogle Scholar
  23. DeClerck F. F. and Herman A. G (1983) Hydroxytryptamine and platelet aggregation Fed Proc. 42, 228–232.Google Scholar
  24. Deshmukh P P., Yamamura H. I, Woods L, and Nelson D. L (1983) Computer-assisted autoradiographic localization of subtypes of serotonin1 receptors in rat brain Brain Res 288, 338–343.PubMedGoogle Scholar
  25. Dompert W. U, Glaser T., and Traber J (1985) 3H-TVXQ7821:Identification of 5-HT1 binding sites as target for a novel putative anxiolytic Naunyn-Schmledeberg’s Arch Pharmacol. 328, 467–470Google Scholar
  26. Edvinsson L and Hardebo J E (1976) Characterization of serotonin receptors in intracranial and extracranial vessels Acta Physiol Scand 97, 523–525.PubMedGoogle Scholar
  27. Edvinsson L., Hardebo J. E., and Owman C (1978) Pharmacological analysis of 5-hydroxytryptamine receptors in isolated intracranial and extracranial vessels of cat and man Circ Res. 42, 143–151PubMedGoogle Scholar
  28. Engel G., Gothert M., Muller-Schweinitzer E., Schlicker E., Sistonen L, and Stadler P A (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS, and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedeberg’s Arch Pharmacol. 324, 116–124.Google Scholar
  29. Engel G., Muller-Schweinitzer E, and Palacios J. M (1984) 2-[125Iodo] LSD, a new ligand for the characterisation and localisation of 5HT2 receptors Naunyn Schmiedeberg’s Arch. Pharmacol. 325, 328–336Google Scholar
  30. Enjalbert A., Bourgoin S., Hamon M., Adrien J, and Bockaert J. (1978a) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. Mol Pharmacol 14, 2–10.PubMedGoogle Scholar
  31. Enjalbert A., Hamon M, Bourgoin S, and Bockaert J (1978b) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system Mol Pharmacol. 14, 11–23PubMedGoogle Scholar
  32. Ennis C. and Cox B. (1982) Pharmacological evidence for the existence of two distinct serotonin receptors in rat brain. Neuropharmacol. 21, 41–44.Google Scholar
  33. Erpsamer V and Asero B. (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine Nature (Lond ) 168, 800–801Google Scholar
  34. Farnebo L. O. and Hamberger B. (1974) Regulation of [3H] 5-hy-droxytryptamine release from rat brain slices J Pharm. Pharmacol 26, 642–644.PubMedGoogle Scholar
  35. Feniuk W, Humphrey P. P A, and Watts A D. (1983) Further evidence for the heterogeneity of vascular receptors for 5-HT. Brit j Pharmacol. 79, 296PGoogle Scholar
  36. Fillion G. (1983) 5-Hydroxytryptamine Receptors in Brain, in Handbook of Psychopharmacology, Vol. 17 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.) pp. 139–166, Plenum, New York.Google Scholar
  37. Fillion G M. B., Rousselle J., Fillion M, Beaudoin D. M, Goiny M R, Deniau J, and Jacob J J (1978) High-affinity binding of [3H]5-Hydroxytryptamine to brain synaptosomal membranes comparison with [3H]lysergic acid diethylamide binding Mol. Pharmacol 14, 50–59PubMedGoogle Scholar
  38. Fillion G., Beaudoin D., Rousselle J. C, Deniau J. M., Fillion M P, Dray F, and Jacob J (1979a) Decrease of [3H]5-HT high-affinity binding and 5-HT adenylate cyclase activation after kainic acid lesion in rat brain striatum. J Neurochem 33, 567–570.PubMedGoogle Scholar
  39. Fillion G, Rousselle J. C., Beaudoin D, Pradelles P., Goiny M., Dray F, and Jacob, J. (1979b) Serotonin sensitive adenylate cyclase in horse brain synaptosomal membranes. Life Sci. 24, 1813–1822PubMedGoogle Scholar
  40. Fillion G, Beaudom D., Rousselle J C., and Jacob J, (1980) [3H]5-HT binding sites and 5-HT-sensitive adenylate cyclase in glial cell membrane fraction. Brain Res. 198, 361–374.PubMedGoogle Scholar
  41. Fillion G., Beaudoin D, Flllion M., Rousselle J. C., Robaut C, and Netter Y (1983) 5-Hydroxytryptamine receptors in neurons and glia. J. Neural Transmission, Suppl 18, 307–317.Google Scholar
  42. Forster C. and Whalley E T. (1982) Analysis of the 5-hydroxytryptamine induced contraction of the human basilar arterial strip compared with the rat aortic strip in vitro. Naunyn Schmiedeberg’s Arch. Pharmaco1 319, 12–17Google Scholar
  43. Friedman R L, Barrett R J, and Sanders-Bush E. (1983) Discriminative cue properties of quipazine mediation by serotonin-2 binding sites Soc. Neurosci Abs 9, 335Google Scholar
  44. Furchgott R F (1978) Pharmacological characterization of receptors its relation to radioligand-binding studies. Fed Proc. 37, 115–120.PubMedGoogle Scholar
  45. Gaddum J. H. and Picarelli Z. P. (1957) Two kinds of tryptamine receptor. Brit J. Pharmacol Chemother 12, 323–328Google Scholar
  46. Geaney D. P., Schachter M., Elliot J. M, and Grahame-Smith D. G (1984) Characterisation of [3H]lysergic acid diethylamide binding to a 5-hydroxytryptamine receptor on human platelet membranes. Eur J Pharmacol 97, 87–93.PubMedGoogle Scholar
  47. Glennon R. A, Young R., and Rosecrans J. A. (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur. J. Pharmacol. 91, 189–196.PubMedGoogle Scholar
  48. Gothert M. (1980) Serotonin-receptor-mediated modulation of Ca2+-dependent 5-hydroxytryptamine release from neurons of the rat brain cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol 314, 223–230.Google Scholar
  49. Gozlan H., El Mestikawy S., Pichat L, Glowmski J, and Hamon M. (1983) Identification of presynaptic serotonin autoreceptors using a new ligand. 3H-PAT. Nature (Lond.) 305, 140–142.Google Scholar
  50. Haigler H. J and Aghajanian G K (1977) Serotonin receptors in the brain. Fed. Proc 36, 2159–2164.PubMedGoogle Scholar
  51. Hall M., El Mestikawy S., Emerit M, Pichat L, Hamon M, Gozlan H (1985) 3H-8-Hydroxy-2-(di-n-propylamino) tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain J Neurochem 44, 1686–1696.Google Scholar
  52. Hamlin K. E. and Fischer F E (1951) The synthesis of 5-hydroxytryptamine. J Am Chem Soc 73, 5007–5008Google Scholar
  53. Hartig P R., Kadan M J, Evans J. J., and Krohn A. M. (1983) 125I-LSD a high-sensitivity ligand for serotonin receptors Eur J Pharmacol 89, 321–322.PubMedGoogle Scholar
  54. Humphrey P P. A, Feniuk W., and Watts A. D (1982) Ketanserin—a novel antihypertensive drug? J Pharm Pharmacol. 34, 541.PubMedGoogle Scholar
  55. Jacobs B. L. (1976) An animal behavioral model for studying central serotonergic synapses Life Sci 19, 777–786.PubMedGoogle Scholar
  56. Kalkman H. O., Batink H. D, ThoolenM. J. M. C, Timmermans P. B M W. M, and Van Zwieten P. A (1983a) Correlation between the affinity for [3H]mianserin-labeled receptors in brain and antagonism of the serotonin pressor response in pithed rats Biochem Pharmacol 32, 2111–2113PubMedGoogle Scholar
  57. Kalkman H. O., Boddeke H. W. G. M, Doods H N., Timmermans P. B M W M, and Van Zwieten P A. (1983b) Hypotensive activity of serotonin receptor agonists in rats is related to their affinity for 5-HT1 receptors Eur J Pharmacol. 91, 155–156.PubMedGoogle Scholar
  58. Kendall D. A. and Nahorski S R. (1983) Temperature-dependent 5-hydroxytryptamine (5-HT)-sensitive [3H]spiperone binding to rat cortical membranes regulation by guanine nucleotide and antidepressant treatment J Pharmacol Exp Ther 227, 429–434.PubMedGoogle Scholar
  59. Kendall D. A and Nahorski S R. (1984) Suppression of 5-HT2 receptor mediated inositol phospholipid breakdown in brain by chronic antidepressant treatment Brit J Pharmacol. 82(suppl), 206PGoogle Scholar
  60. Leysen J E. (1981) Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding studies in vitro. J. Physiol (Paris) 77, 351–362.Google Scholar
  61. Leysen J. E and Tollenaere J. P (1982) Biochemical models for serotonin receptors. Ann. Rev Med Chem 17, 1–10.Google Scholar
  62. Leysen J. E., Niemegeers C. J. E, Tollenaere J P., and Laduron P. M. (1978) Serotonergic component of neuroleptic receptors. Nature (Lond ) 272, 163–166Google Scholar
  63. Leysen J. E., Niemegers C J E., Van Nueten J M, and Laduron P M (1982) 3H-Ketanserin (R 41 468), a selective 3H-ligand for receptor binding sites. Mol Pharmacol 21, 301–314.PubMedGoogle Scholar
  64. Limbird L. E. (1981) Activation and attenuation of adenylate cyclase. Biochem J 195, 1–13.PubMedGoogle Scholar
  65. Lovell R. A and Freedman D. X. (1976) Stereospecific receptor sites for D-lysergic acid diethylamide in rat brain: effects of neurotransmitters, amine antagonists, and other psychotropic drugs. Mol Pharmacol 12, 620–630.PubMedGoogle Scholar
  66. Lucki I, Nobler M S., and Frazer A. (1984) Different actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J. Pharmacol Exp. Ther 228, 133–139PubMedGoogle Scholar
  67. Maguire M E, Ross E. M, and Gilman A G (1977) β-Adrenergic receptor: ligand binding properties and the interaction with adenylyl cyclase. Adv. Cyclic Nucleotide Res 8, 1–83PubMedGoogle Scholar
  68. Maayani S and Stollak J (1983) 5-HT receptors in isolated rabbit aorta Characterization by spiroperidol and other butyrophenones Fed. Proc. 42, 1150Google Scholar
  69. Mallat M. and Hamon M (1982) Ca2+-guanine nucleotide interactions in brain membranes. I Modulation of central 5-hydroxytryptamine receptors in the rat. J Neurochem 8, 151–161Google Scholar
  70. Marcinkiewicz M., Verge D., Gozlan H., Pichat L., and Hamon M (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291, 159–363.PubMedGoogle Scholar
  71. Martin L L. and Sanders-Bush E (1982a) The serotonin autoreceptor. antagonism by quipazine. Neuropharmacol. 21, 445–450.Google Scholar
  72. Martin L L and Sanders-Bush E (1982b) Comparison of the pharmacological characteristics of 5 HT1 and 5 HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg’s Arch. Pharmacol. 321, 165–170.Google Scholar
  73. Middlemiss D N. and Fozard J. R. (1983) 8-hydroxy-2(DI-n-Propyl-amino)-tetralin discriminates between sybtypes of the 5-HT1 recognition site. Eur J. Pharmacol 90, 151–153.PubMedGoogle Scholar
  74. Muller-Schweinitzer E (1980) The mechanism of ergometrine-induced coronary arterial spasm In vitro studies on canine arteries J Cardiovas Pharmacol. 2, 645–655.Google Scholar
  75. Nelson D. L, Herbet A, Bourgoin S, Glowinski J., and Hamon M (1978) Characteristics of central 5-HT receptors and their adaptive changes followmg intracerebral 5,7-dihydroxy-tryptamine administration in the rat Mol Pharmacol. 14, 983–995.PubMedGoogle Scholar
  76. Nelson D L, Herbet A., Enjalbert A., Bockaert J., and Hamon M. (1980a) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat. I. Biochem. Pharmacol 29, 2445–2453.PubMedGoogle Scholar
  77. Nelson D. L, Herbet A., Adrien J., Bockaert J., and Hamon M. (1980b) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sies in the CNS of the rat II Biochem Pharmacol 29, 2455–2463.PubMedGoogle Scholar
  78. Norman A. B., Battaglia G, Morrow A L., and Creese I. (1985) [su3H-WB4101 labels S1 serotonin receptors in rat cerebral cortex. Eur J Pharmacol. 106: 461–462Google Scholar
  79. Ortmann R., Brschoff S., Radeke E, Buech O., and Delini-Stula A. (1982) Correlations between different measures of antiserotonin activity of drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 321, 265–270.Google Scholar
  80. Palacios J. M., Niehoff D. L., and Kuhar M. J. (1981) [3H]Spiperone binding sites in brain autoradiographic localization of multiple receptors. Brain Res. 213, 277–289.PubMedGoogle Scholar
  81. Palacios J. M., Probst A, and Cortes R. (1983) The distribution of serotonin receptors in the human brain. high density of [3H]LSD binding sites in the raphe nuclei of the brainstem Brain Res. 274, 150–155.PubMedGoogle Scholar
  82. Pazos A., Engel G., and Palacios J. (1985) Beta-adrenoceptor blocking agents recognize a subpopulation of serotonin receptors in brain. Brain Res 343, 403–408.PubMedGoogle Scholar
  83. Pazos A., Hoyer D., and Palacios J. (1985) The binding of serotonergic ligands to the porcine choroid plexus Characterization of a new type of serotorun recognition site. Eur J. Pharmacol. 106, 539–546.Google Scholar
  84. Pedigo N W., Yamamura H I, and Nelson D. L. (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain J. Neurochem 36, 220–226.PubMedGoogle Scholar
  85. Peroutka S. J. (1984) Vascular serotonin receptors correlation with 5-HT1 and 5-HT2 binding sites. Biochem Pharmacol 33, 2349–2353.PubMedGoogle Scholar
  86. Peroutka S. J. (1985) Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 344, 167–171.PubMedGoogle Scholar
  87. Peroutka S. J. and Kuhar M. J, (1984) Autoradiographic localization of 5-HT1 receptors to human and canine basilar arteries Brain Res. 310, 193–196.PubMedGoogle Scholar
  88. Peroutka S J. and Snyder S H (1979) Multiple serotonin receptors Differential binding of 3H-serotonin, 3H-lysergic acid diethylamide, and 3H-spiroperidol Mol Pharmacol 16, 687–699PubMedGoogle Scholar
  89. Peroutka S. J. and Snyder S H. (1980a) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210, 88–90.PubMedGoogle Scholar
  90. Peroutka S. J. and Snyder S. H. (1980b) Regulation of serotonin2 (5-HT2) receptors labeled with 3H-spiroperidol by chronic treatment with the antidepressant amitriptyline. J. Pharmacol Exp. Ther 15, 582–587.Google Scholar
  91. Peroutka S. J. and Snyder S H. (1981) Two distinct serotonin receptors: Regional variations in receptor binding in mammalian brain. Brain Res. 208, 339–347PubMedGoogle Scholar
  92. Peroutka S. J. and Snyder S.H. (1983) Multiple serotonin receptors and their physiological significance Fed Proc 42, 213–217.PubMedGoogle Scholar
  93. Peroutka S J., Lebovitz R. M., and Snyder S. H. (1979) Serotonin receptor binding affected differentially by guanine nucleotides. Mol Pharmacol. 16, 700–708PubMedGoogle Scholar
  94. Peroutka S J, Lebovitz R. M, and Snyder S H. (1981) Two distinct central serotonin receptors with different physiological functions. Science 212, 827–829.PubMedGoogle Scholar
  95. Peroutka S. J,, Noguchi M, Tolner D. J., and Allen G S (1983) Serotonin induced contraction of canine basilar artery. mediation by 5-HT1 receptors. Brain Res. 259, 327–330.PubMedGoogle Scholar
  96. Pletscher A and Affolter H (1983) The 5-hydroxytryptamine receptor of blood platelets. J Neural Transmission 57, 233–242.Google Scholar
  97. Quik M, Iversen L. L., Lardner A, and Mackay A V P (1978) Use of ADTN to defme specific 3H-spiperone binding to receptors in brain Nature (Lond ) 274, 513–514.Google Scholar
  98. Rapport M. M., Green A A., and Page I. H (1948) Serum vasoconstrictor (serotonin) IV. Isolation and characterization. J Biol Chem 176, 1243–1251.PubMedGoogle Scholar
  99. Roberts M. H T and Straughan D. W (1967) Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol (Lond.) 193, 269–294.Google Scholar
  100. Rodbell M (1980) The role of hormone receptors and GTP regulatory proteins in membrane transduction Nuture (Lond.) 284, 17–21Google Scholar
  101. Rogawski M. A. and Aghajanian G. K. (1981) Serotonin autoreceptors on dorsal raphe neurons. structure-activity relationships of tryptamine analogs J Neurosci 1, 1148–1154PubMedGoogle Scholar
  102. Sastry B. S R. and Phlllis J W (1977) Metergoline as a selective 5-hydroxytryptamine antagonist in the cerebral cortex Can J Physiol Pharmacol. 55, 130–133PubMedGoogle Scholar
  103. Schmauss C., Hammond D. L., Ochi J. W., and Yaksh T L (1983) Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur. J Pharmacol. 90, 349–357.PubMedGoogle Scholar
  104. Schnellmann R G., Waters S J, and Nelson D L. (1984) [3H]5-hydroxytryptamine binding sites species and tissue variation J Neurochem 42, 65–70.PubMedGoogle Scholar
  105. Schotte A., Maloteaux J. M, and Laduron P M (1983) Characterization and regional distribution of serotonin S2-receptors in human brain Brain Res 276, 231–235PubMedGoogle Scholar
  106. Shenker A, Maayani S, Weinstein H, and Green J. P. (1983) Characterization of a serotonin receptor coupled to adenylate cyclase in adult guinea pig hippocampus Soc. Neurosci Abs 9, 1152.Google Scholar
  107. Sills M. A., Wolfe B. B., and Frazer A (1984b) Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther 231, 480–487.PubMedGoogle Scholar
  108. Slater P. and Pate1 S. (1983) Autoradiographic distribution of serotonin2 receptors in rat brain Eur J. Pharmacol. 92, 297–298.PubMedGoogle Scholar
  109. Snyder S. H (1983) Molecular Aspects of Neurotransmitter Receptors. An Overview, in Handbook of Psychopharmacology, Vol. 17, (Iversen L. L, Iversen S. D., and Snyder S. H., eds.), pp. 1–12, Plenum, New York.Google Scholar
  110. Snyder S. H. (1984) Drug and neurotransmitter receptors in the brain. Science 224, 22–31PubMedGoogle Scholar
  111. Titeler M., Battaglia G, and Shannon M (1984) Guanine nucleotides modulate cortical S2 serotonin receptors Soc. Neurosci Abs 9, 334Google Scholar
  112. Toda N and Fujita Y. (1973) Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine, and transmural electrical stimulation. Circ Res 33, 98–104PubMedGoogle Scholar
  113. Twarog B. M. and Page I. H (1953) Serotonin content of some mammalian tissues and urine and a method for its determmation Am J Psychiat. 175, 157–161.Google Scholar
  114. Van Nueten J M, Leysen J. E., Vanhoutte P M., and Janssen P A (1982) Serotonergic responses in vascular and nonvascular tissues. Arch. Int Pharmacodyn 256, 331–334.PubMedGoogle Scholar
  115. Von Hungen K, Roberts S., and Hill D. F (1974) Developmental and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain J Neurochem 22, 811–819Google Scholar
  116. Von Hungen K, Roberts S, and Hill D. F (1975) Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Res 84, 257–267Google Scholar
  117. Wrigglesworth S. J. (1983) Heterogeneity of 5-hydroxytryptamine receptors in the rat uterus and stomach strip Brit.J Pharmacol 80,691–697Google Scholar
  118. Yamamura H. I., Enna S. J., and Kuhar M J, (eds.) (1978) Neurotransmitter Receptor Binding. Raven Press, New YorkGoogle Scholar
  119. Yap C. Y and Taylor D. A. (1983) Involvement of 5-HT2 receptors in the wet-dog shake behavior induced by 5-hydroxytryptophan in the rat Neuropharmacol 22, 801–804.Google Scholar
  120. Young W. S., III and Kuhar M. J, (1980) Serotonin receptor localization in rat brain by light microscopic autoradiography Eur J Pharmacol 62, 237–239PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1986

Authors and Affiliations

  • Stephen J. Peroutka

There are no affiliations available

Personalised recommendations