Skip to main content

Uptake and Release of Amino Acid Neurotransmitters

  • Protocol
Amino Acids

Part of the book series: Neuromethods ((NM,volume 3))

Abstract

The amino acid content of the central nervous system (CNS) is controlled by the blood-brain barrier. Despite a constant exchange of amino acids in both directions, this interface mediates a net uptake from blood plasma into cerebrospinal fluid (CSF). As in most other cells, amino acids in the brain have their roles as constituents of protein, metabolic precursors, and intermediates in energy and nitrogen metabolism; furthermore these compounds are involved in osmoregulation The system in which these functions are most fully understood is probably the Ehrlich ascites tumor cell (Johnstone, 1979) In the brain, some amino acids clearly have an additional function; that of neurotransmitter, i.e., a chemical messenger that bridges the synaptic clefts between neural membranes, thus mediating interneuronal signaling. Glutamate and aspartate are established excitatory transmitters, whereas this role for cysteate and cysteine sulfinate is putative. Inhibitory transmitters are γ-aminobutyric acid (GABA), glycine (in the spinal cord), and taurine (regarded as a more general neuromodulator) Glutamine is not a neurotransmitter, but an important transport vehicle to transfer neurotransmitters in an inactive form between cells. This compound is, therefore, also to be considered in the present context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aprison M. H, Davidoff R. A., and Werman R (1970) Glycine-Its Metabolic and Possible Roles in Nervous Tissue, in Handbook of Neurochemistry, Vol 3, (Lajtha A, ed) Plenum, New York, pp 381–397

    Google Scholar 

  • Aprison M H and McBride W. J (1973) Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat Life Sci 7, 583–590.

    Google Scholar 

  • Baker P F and Glitsch H G (1975) Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations Phil, Trans Roy Soc (B) 270, 389–409

    CAS  Google Scholar 

  • Beart P. M., Kelly J. S, and Schon F. (1974)-γ-Aminobutyric acid uptake in the rat peripheral nervous system, pineal, and posterior pituitary Biochem Soc Trans 2, 266–268

    CAS  Google Scholar 

  • Benjamin A M and Quastel J H. (1972) Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids Biochem J 128, 631–646

    PubMed  CAS  Google Scholar 

  • Bowery N G. and Brown D A. (1972) Gamma-aminobutync acid uptake by sympathetic ganglia Nature New Biol 238, 89–91

    PubMed  CAS  Google Scholar 

  • Bowery N G, Brown D. A, Marsh S, Adams P R, and Brown D A (1979) Gamma-aminobutyric acid efflux from sympathetic glial cells. Effect of depolarizing agents J Physiol 293, 75–101

    PubMed  CAS  Google Scholar 

  • Bradford H. F (1970) Metabolic response of synaptosomes to electrical stimulation Release of amino acids Brain Res 19, 239–247

    PubMed  CAS  Google Scholar 

  • Bradford H F. (1981) GABA release in vivo and in vitro Responses to Physiological and Chemical Stimuli, in Regulatory Mechanisms of Synaptic Transmission (Tapia R and Cotman R. W., eds.) Plenum, New York, pp 103–140

    Google Scholar 

  • Chandler D E. and Williams J. A (1977) Intracellular uptake and γ-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A 23187 in dissociated pancreatic acinar cells J Membr Biol 32, 201–230.

    PubMed  CAS  Google Scholar 

  • Chase T N and Kopin I. J (1968) Stimulus-induced release of substances from olfactory tubercle using push-pull cannula Nature (Lond ) 217, 466–467.

    CAS  Google Scholar 

  • Clark R M and Collins G G S. (1976) The release of endogenous amino acids from the rat visual cortex J Physiol 262, 383–400.

    PubMed  CAS  Google Scholar 

  • Cohen S R (1974) The dependence of water content and extracellular marker spaces of incubated mouse brain slices on thickness, alterations produced by slicing and fluid spaces in intact and altered tissue Exp Brain Res 20, 435–457

    PubMed  CAS  Google Scholar 

  • Collins G G S (1974) The spontaneous and electrically evoked release of [3H]-GABA from the isolated hemisected frog spinal cord Brain Res 66, 121–137

    CAS  Google Scholar 

  • Cotman C W, Haycock J W., and White W F (1976) Stimulussecretion coupling processes in brain. Analysis of noradrenaline and gamma-aminobutyric acid release. J Physiol 254, 475–505

    PubMed  CAS  Google Scholar 

  • Cotman C. W, Herschmann H, and Taylor D. (1971) Subcellular fractionation of cultured glial cells.J Neurobiol. 2, 169–180

    PubMed  CAS  Google Scholar 

  • Cotman C W and Matthews D A. (1971) Synaptic plasma membranes from rat brain synaptosomes. Isolation and partial characterization. Biochem Biophys Acta 249, 380–394

    PubMed  CAS  Google Scholar 

  • Cox D W G and Bradford H. F (1978) Uptake and Release of Excitatory Amino Acid Neurotransmitters, in Kainic Acid as a Tool in Neurobiology (McGeer E G, ed ) Raven Press, New York, pp 71–93.

    Google Scholar 

  • Cutler R W. P. Hammerstad J. F, Cornick L R, and Murray J E (1971) Efflux of amino acid neurotransmitters from rat spinal cord slices I Factors influencing the spontaneous efflux of [I4C] glycine and 3H–GABA Brain Res 35, 337–355.

    PubMed  CAS  Google Scholar 

  • De Belleroche J S and Bradford H F (1972) Metabolism of beds of mammalian cortical synaptosomes′ Response to depolarizing influences. J Neurochem 19, 585–602.

    PubMed  Google Scholar 

  • Dodd D R and Bradford H F. (1974) Release of amino acids from the chronically superfused mammalian cerebral cortex J. Neurochem 23, 289–292

    PubMed  CAS  Google Scholar 

  • Dodd D R. and Bradford H F (1976) Release of amino acids from the maturing cobalt-induced epileptic focus Brain Res 111, 377–388

    PubMed  CAS  Google Scholar 

  • Dodd D R, Pritchard M J, Adams R C. F, Bradford H F., Hicks G., and Blanshard K C (1974) A method for the continuous, long-term superfusion of the cerebral cortex of unanesthelised, unrestrained rats J. Sci Inst 7, 897–901

    CAS  Google Scholar 

  • Donatsch P, Lowe D A, Richardson B P, and Taylor P (1977) The functional significance of sodium channels in pancreatic beta-cell membranes J Physiol. 267, 357–376

    PubMed  CAS  Google Scholar 

  • Fagg G. E, Jones I M, and Jordan C C (1978) Descending fibermediated release of endogenous glutamate and glycine from the perfused cat spinal cord in vivo Brain Res 158, 159–170.

    PubMed  CAS  Google Scholar 

  • Fagg G E and Lane J. D (1979) The uptake and release of putative amino acid neurotransmitters Neuroscience 4, 1015–1036

    PubMed  CAS  Google Scholar 

  • Gauchy C M, Iversen L L, and Jessell T M. (1977) The spontaneous and evoked release of newly synthesized [14] GABA from rat cortex in vitro Brain Res 138, 374–379

    PubMed  CAS  Google Scholar 

  • Haschke R and Heavner E (1976) Glutamate breakdown during electric field stimulation. Brain Res 102, 351–354

    PubMed  CAS  Google Scholar 

  • Haycock J. W, Levy W B., Denner L A, and Cotman C W (1978) Effects of elevated [K+] on the release of neurotransmitters from cortical synaptosomes′ efflux or secretion J Neurochem 30, 1113–1125

    PubMed  CAS  Google Scholar 

  • Henn F A. (1982) Neurotransmitters and Astroglia Lead to Neuromodulation, in Chemical Transmission in the Brain (Bujs, R. M., Pevet P., and Schwab D. F. eds.) Elsevier, Amsterdam, pp 241–252.

    Google Scholar 

  • Henn F A., Anderson D J., and Rustad D G (1976) Glial contamination of synaptosomal fractions Brain Res 101, 341–344

    PubMed  CAS  Google Scholar 

  • Hertz L (1979) Functional interactions between neurons and astrocytes I Turnover and metabolism of putative amino acid transmitters Prog Neurobiol 13, 277–323.

    PubMed  CAS  Google Scholar 

  • Hertz L (1982) Astrocytes, in Handbook of Neurochemistry, Vol I, 2nd Edition (Lajtha A, ed.) Plenum, New York, pp 319–355.

    Google Scholar 

  • Hertz L, Juurlink B H. J., Szuchet S., and Walz W. (1985) Cell and Tissue Cultures, in Neuromethods, Vol. 1 (Boulton A A and Baker G B. eds.), Humana, Clifton, New Jersey

    Google Scholar 

  • Hertz L, Kvamme E., McGeer E, and Schousboe A (1983) Glutamine, Glutamate, and GABA in the Central Nervous System Alan R Liss, New York

    Google Scholar 

  • Hertz L., Schousboe A., Boechler N, Mukerji S., and Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in culture Neurochem Res 3, 1–14

    PubMed  CAS  Google Scholar 

  • Hertz L., Yu A, Svenneby G, Kvamme E., Fosmark H., and Schousboe A. (1980) Absence of preferential glutamine uptake into neurons. An indication of a net transfer of TCA constituents from nerve endings to astrocytes? Neurosci Lett 16, 103–109

    PubMed  CAS  Google Scholar 

  • Hoffman E K., Simonsen L O, and Lambert I H (1984) Volume-induced increase of K+ and Cl- permeabilities in Ehrlich ascites tumor cells Role of internal calcium J Membrane Biol 78, 211–222

    Google Scholar 

  • Holloway P. W (1973) A simple procedure for removal of tnton X-100 from protein samples Anal Biochem 53, 304–308

    PubMed  CAS  Google Scholar 

  • Hosli E. and Hosli L. (1976) Autoradiographic studies on the uptake of [3H] noradrenalme and [3H] GABA in cultured rat cerebellum Exp Brain Res 26, 319–324

    PubMed  CAS  Google Scholar 

  • Hutchison H T, Werrbach K, Vance C, and Haber B (1974) Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture I Transport of-γ-ammobutync acid Brain Res 66, 265–274.

    Google Scholar 

  • Iversen L L. and Neal M. J (1968) The uptake of [3H]-GABA by slices of rat cerebral cortex J Neurochem. 15, 1141–1149

    PubMed  CAS  Google Scholar 

  • Jasper H H. and Koyama I (1969) Rate of release of amino acids from the cerebral cortex in the cat as affected by brain stem and thalamic stimulation Can J Physiol Pharmacol 47, 889–905.

    PubMed  CAS  Google Scholar 

  • Johnstone R M (1979) Electrogenic amino acid transport Can J Physiol Pharmacol 57, 1–15

    PubMed  CAS  Google Scholar 

  • Kagawara Y. and Racker E (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation J Biol. Chem 246, 5477–5487

    Google Scholar 

  • Kanner B I (1978a) Solubilisation and reconstitution of the γ-amino butyric acid transporter from rat brain FEBS Lett 89, 47–50

    PubMed  CAS  Google Scholar 

  • Kanner B 1 (1978b) Active transport of γ-aminobutync acid by membrane vesicles isolated from rat brain Biochemistry 17, 1207–1211

    PubMed  CAS  Google Scholar 

  • Kohn M. C, Menten L E, and Garfinkel D (1979) A convenient computer program for fitting enzymatic rate laws to steady state data. Comput Biomed Res 12, 461–469

    PubMed  CAS  Google Scholar 

  • Lahdesmaki P and Oja S S (1973) Mechanism of taurine transport at brain cell membranes J Neurochem 20, 1411–1417

    PubMed  CAS  Google Scholar 

  • Lajtha A (1983) Handbook of Neurochemistry, Vol. 5, 2nd Ed., Plenum, New York

    Google Scholar 

  • Lake N and Voaden M. J. (1976) Exchange versus net uptake of exogenously-applied γ-aminobutyric acid in retina J. Neurochem. 27, 1571–1573

    PubMed  CAS  Google Scholar 

  • Lakshmanan J and Padmanaban G (1974) Effect of γ-oxalyl-L-γ, β-diaminopropionic acid on glutamate uptake by synaptosomes Nature 249, 469–471.

    PubMed  CAS  Google Scholar 

  • Larsson O. M, Johnston G A R, and Schousboe A (1983) Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures Brain Res 260, 279–285.

    PubMed  CAS  Google Scholar 

  • Larsson O M, Thorbek P, Krogsgaard-Larsen P, and Schousboe A. (1981) Effects of homo-β-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and GABA receptor binding. J Neurochem 37, 1509–1516.

    PubMed  CAS  Google Scholar 

  • Lasher R S (1974) The uptake of [3H] GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum Brain Res 69, 235–254

    PubMed  CAS  Google Scholar 

  • Latorre R, Coronado R, and Vergara C. (1984) K ′ channels gated by voltage and ions Ann Rev Physiol 46, 485–495

    CAS  Google Scholar 

  • Levi G, Banay-Schwartz M, and Raiten M. (1978) Uptake, Exchange, and Release of GABA in Isolated Nerve Endings, in Amino Acids as Chemical Transmitters (Fonnum F, ed.) Plenum, New York, pp 327–350

    Google Scholar 

  • Levi G., Bertollini A., Chen J, and Raiten M (1974) Regional differences in the synaptosomal uptake of 3H-γ-aminobutync acid and 14C-glutamate and possible role of exchange processes J Pharmacol Exp Therap 188, 429–438

    CAS  Google Scholar 

  • Levi G, Coletti A., Poce V, and Raiteri M (1976) Decrease of uptake and exchange of neurotransmitter amino acids after depletion of their synaptosomal pools Brain Res 103, 103–116.

    PubMed  CAS  Google Scholar 

  • Levi G and Raiteri M. (1973) GABA and glutamate uptake by subcellular fractions enriched in synaptosomes Critical evaluation of some methodological aspects. Brain Res 57, 165–185

    PubMed  CAS  Google Scholar 

  • Levi G and Raiteri M (1974) Exchange of neurotransmitter amino acids at nerve endings can stimulate high-affinity uptake Nature (Lond ) 250, 735–737

    CAS  Google Scholar 

  • Levi G and Raiteri M (1976) Synaptosomal transport processes lnt Rev Neurobiol 19, 51–74.

    CAS  Google Scholar 

  • Levy W B, Haycock J W, and Cotman C W (1976) Stimulationdependent depression of readily releasable neurotransmitter pools in brain. Brain Res 115, 243–256

    PubMed  CAS  Google Scholar 

  • Levy W B, Redburn D A, and Cotman C W (1973) Stimulus-coupled secretion of γ-aminobutync acid from rat brain synaptosomes Science 181, 676–678

    PubMed  CAS  Google Scholar 

  • Lilly J C (1961) Injury and Excitation by Electric Currents A The Balanced Pulse-Pair Waveform, in Electrical Stimulation of the Brain (Sheer D E, ed.) University of Texas Press, Austin, pp 60–64

    Google Scholar 

  • Martin D L. (1976) Carrier-Mediated Transport and Removal of GABA from Synaptic Regions, in GABA in Nervous System Function (Roberts E, Chase T N, and Tower D B, eds) Raven Press, New York, pp 347–386

    Google Scholar 

  • Martin D L and Smith A A (1972) Ions and the transport of gammaaminobutync acid by synaptosomes. J Neurochem 19, 841–855

    PubMed  CAS  Google Scholar 

  • McGeer P, Eccles J C, and McGeer E G (1978) Molecular Neurobiology of the Mammalian Brain, Plenum, New York

    Google Scholar 

  • Mcllwain H. (1975) Practical Neurochemistry, 2nd Ed, Churchill Livingstone, Edinburgh

    Google Scholar 

  • Mcllwain H and Rodnight R (1962) Practical Neurochemistry, Churchill, London

    Google Scholar 

  • Minchin M C. W (1975) Factors influencing the efflux of [3H] gammaaminobutyric acid from satellite glial cells in rat sensory ganglia J Neurochem 24, 571–577

    PubMed  CAS  Google Scholar 

  • Minchin M. C and Iversen L L (1974) Release of [3H] gammaaminobutyric acid from glial cells in rat dorsal root ganglia J Neurochem 23, 533–540

    PubMed  CAS  Google Scholar 

  • Morgan I. G (1976) Synaptosomes and cell separation.Neuroscience 1, 159–165

    PubMed  CAS  Google Scholar 

  • Morton I K M, Stagg C F, and Webster R A (1977) Perfusion of the central canal and subarachnoid space of the cat and rabbit spinal cord in vivo Neuropharmacol 16, 1–6

    CAS  Google Scholar 

  • Neal M J. and Bowery N G. (1979) Differential effects of veratridine and potassium depolarization on neuronal and glial GABA release Brain Res 167, 337–343

    PubMed  CAS  Google Scholar 

  • Neal M J and Starr M. S (1973) Effects of inhibitors of γ-aminobutyrate aminotransferase on the accumulation of 3H-γ-aminobutync acid by the retina. Brit J Pharmacol 47, 543–555

    CAS  Google Scholar 

  • Oja S S and Korpi E R (1983) Amino Acid Transport, in Handbook of Neurochemistry, 2nd Ed, Vol V (Lajtha A., ed) Plenum, New York, pp 311–337

    Google Scholar 

  • Orrego F (1979) Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro Neuroscience 4, 1037–1057

    PubMed  CAS  Google Scholar 

  • Orrego F, Jankelevich J, Ceruti L, and Ferrara E. (1974) Differential effects of electrical stimulation on release of 3H-noradrenaline and 14C-γ-aminoisobutyrate from brain slices Nature (Lond ) 251, 55–57

    CAS  Google Scholar 

  • Orrego F and Miranda R (1976) Electrically induced release of ( H)-GABA from neocortical thin slices Effects of stimulus waveform and of amino-oxyacetic acid J. Neurochem 26, 1033–1038

    PubMed  CAS  Google Scholar 

  • Orrego F, Miranda R, and Saldate C (1976) Electrically induced release of labeled taurine, γ-and β-alanine, glycine, glutamate, and other amino acids from rat neocortical slices in vitro Neuroscience 1, 325–332.

    PubMed  CAS  Google Scholar 

  • Pappius H M. and Elliott K A C (1956) Water distribution in incubated slices of brain and other tissues Can j Biochem Physiol 34, 1007–1022

    PubMed  CAS  Google Scholar 

  • Pastuszko A, Wilson D F and Erecinska M (1981) Net uptake of γ-aminobutyric acid by a high-affinity system of rat brain synaptosomes Proc Natl Acad Sci USA 78, 1242–1244.

    PubMed  CAS  Google Scholar 

  • Patterson M S and Greene R C (1965) Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions Anal them 37, 854–857

    CAS  Google Scholar 

  • Pearce B R, Currie D N, Beale R., and Dutton G R. (1981) Potassiumstimulated, calcium-dependent release of [3H] GABA from neuronand glia-enriched cultures of cells dissociated from rat cerebellum Brain Res 206, 485–489

    PubMed  CAS  Google Scholar 

  • Pearce B R., Currie D N, Dutton G R, Hussey R E G, Beale R., and Pigott R (1981) A simple perfusion chamber for studying neurotransmitter release from cells maintained in monolayer culture J Neurosci Methods 3, 255–259

    PubMed  CAS  Google Scholar 

  • Raiten M, Frederico R, Coletti A, and Levi G (1975) Release and exchange studies relating to the synaptosomal uptake of GABA J Neurochem 24, 1243–1250

    Google Scholar 

  • Ramaharobandro N, Borg J, Mandel P and Mark J (1982) Glutamine and glutamate transport in cultured neuronal and glial cells Brain Res 244, 113–121

    PubMed  CAS  Google Scholar 

  • Redburn D A, Biela J, Shelton D L and Cotman C W. (1975) Stimulus secretion coupling in vitro A rapid perfusion apparatus for monitoring efflux of transmitter substances from tissue samples Anal Biochem 67, 268–278

    PubMed  CAS  Google Scholar 

  • Reubi J and Cuenod M (1976) Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus Brain Res 112, 347–361

    PubMed  CAS  Google Scholar 

  • Roberts P J. (1974) Amino acid release from isolated rat dorsal root ganglia Brain Res 74, 327–332

    PubMed  CAS  Google Scholar 

  • Roberts P J (1976) Gamma-aminobutyric acid homoexchange in sensory ganglia Brain Res 113, 206–209

    PubMed  CAS  Google Scholar 

  • Roskoski R (1978) Net uptake of L-glutamate and GABA by highaffinity synaptosomal transport systems J Neurochem 31, 493–498

    PubMed  CAS  Google Scholar 

  • Rubin R P (1970) The role of calcium in the release of neurotransmitter substances and hormones Pharmacol Rev 22, 389–498.

    PubMed  CAS  Google Scholar 

  • Ryan L D and Roskoski R (1975) Selective release of newly synthesized and newly captured GABA from synaptosomes by potassium depolarization Nature (Lond ) 258, 254–256

    CAS  Google Scholar 

  • Ryan L D. and Roskoski R (1977) Net uptake of GABA by a highaffinity synaptosomal system. J Pharmacol Exp Therap 200, 285–291

    CAS  Google Scholar 

  • Salceda R and Pasantes-Morales H (1975) Calcium coupled release of (35S) attaurine from retina Brain Res 96, 206–211

    PubMed  CAS  Google Scholar 

  • Schlaepfer W W. (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A 23187 Brain Res 136, 1–9

    PubMed  CAS  Google Scholar 

  • Schon F and Kelly J S (1974) The characterization of [3]H]-GABA uptake into the satellite glial cells of rat sensory ganglia Brain Res 66, 289–300

    CAS  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells, int Rev Neurobiol 22, 1–45

    PubMed  CAS  Google Scholar 

  • Schousboe A. (1982) Metabolism and Function of Neurotransmitters, in Neuroscience Approached Through Cell Culture, Vol I (Pfeiffer S. E, ed) CRC Press, Boca Raton, pp 107–141

    Google Scholar 

  • Schousboe A, Larsson O M., Drejer P., Krogsgaard-Larsen P., and Hertz L (1983) Uptake and Release Processes for Glutamine, Glutamate, and GABA in Cultured Neurons and Astrocytes, in Glutamine, Glutamate, and GABA in the Central Nervous System (Hertz L, Kvamme E., McGeer E., and Schousboe A, eds) Alan R. Liss, New York, pp 297–315

    Google Scholar 

  • Schousboe A, Larsson O M., Hertz L, and Krogsgaard-Larsen P (1981) Heterocychc GABA analogs as new selective inhibitors of astroghal GABA transport Drug Dev. Res 1, 115–127

    CAS  Google Scholar 

  • Schousboe A, Thorbek P., Hertz L, and Krogsgaard-Larsen P (1979) Effects of GABA analogs of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J Neurochem. 33, 181–189

    PubMed  CAS  Google Scholar 

  • Schrier B K and Thompson E J (1974) On the role of glial cells in the mammalian nervous system Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells J. Biol Chem 249, 1769–1780

    PubMed  CAS  Google Scholar 

  • Schwartzkroin P A (1981) To Slice or Not To Slice, in Electrophysiology of Isolated Mammalian CNS Preparations (Kerkut G A. and Wheal H V, eds) Academic Press, London, pp 15–50

    Google Scholar 

  • Scott-Young W (1985) In Vivo Autoradiographic Localization of Amino Acid Receptors and Uptake Sites, in Neuromethods. Amino Acids (Boulton A A, Baker G B, and Wood J D, eds.) Humana, Clifton, New Jersey (in press)

    Google Scholar 

  • Sellstrom A and Hamberger A. (1977) Potassium-stimulated γ-aminobutyric acid release from neurons and glia Brain Res 119, 189–198

    PubMed  CAS  Google Scholar 

  • Sellstrom A, Venema R. and Henn F (1976) Functional assessment of GABA uptake or exchange by synaptosomal fractions Nature (Lond ) 264, 652–653

    CAS  Google Scholar 

  • Sershen H and Lajtha A (1974) The distribution of amino acids, Na+ and K+ from surface to center in incubated slices of mouse brain J Neurochem 22, 977–985.

    PubMed  CAS  Google Scholar 

  • Shank R P and Campbell G L (1984) Amino acid uptake, content, and metabolism by neuronal and glial enriched cellular fractions from mouse cerebellum.J. Neurosci 4, 58–69

    PubMed  CAS  Google Scholar 

  • Shank R P and Baxter C F (1975) Uptake and metabolism of glutamate by isolated toad brains containing different levels of endogenous amino acids. J Neurochem 24, 641–646

    PubMed  CAS  Google Scholar 

  • Simon J R, Martin D L, and Kroll M. (1974) Sodium-dependent efflux and exchange of GABA in synaptosomes J Neurochem 23, 981–991

    PubMed  CAS  Google Scholar 

  • Szerb J C (1982) Effect of nipecotic acid, a γ-aminobutyric acid transport inhibitor, on the turnover and release of-γ-aminobutync acid in rat cortical slices J Neurochem 39, 850–858

    PubMed  CAS  Google Scholar 

  • Szerb J C (1983) Mechanisms of GABA Release, in Glutamine, Glutamate, and GABA in the Central Nervous System (Hertz L, Kvamme E, McGeer E, and Schousboe A.,eds.) Alan R Liss, New York, pp 457–472

    Google Scholar 

  • Tang C. M, Cohen M W, and Orkand R. K. (1979) Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa J Gen Physiol 74, 629–642

    CAS  Google Scholar 

  • Tapia R. (1983)-γ-Aminobutyric acid. Metabolism and Biochemistry of Synaptic Transmission, in Handbook of Neurochemistry Vol. 3 (Lajtha L., ed ) Plenum, New York, pp 423–466.

    Google Scholar 

  • Ulbricht W (1969) The effect of veratridine on excitable membranes of nerve and muscle Ergeb Physiol Biol Chem Exp Pharmakol 61, 18–71.

    CAS  Google Scholar 

  • Valdes F and Orrego F. (1978) Electrically induced calcium-dependent release of endogenous GABA from rat brain cortex slices Brain Res 141, 357–363

    PubMed  CAS  Google Scholar 

  • Vargas O, de Lorenzo M. D. C, and Orrego F (1977a) Effect of elevated extracellular potassium on the release of labeled noradrenaline, glutamate, glycine, β-alanine, and other amino acids from rat brain cortex slices Neuroscience 2, 383–390

    PubMed  CAS  Google Scholar 

  • Vargas O., de Lorenzo M D. C, Saldate M. C, and Orrego F (1977b) Potassium-induced release of [3H]-GABA and of [3H]-noradrenaline from normal and reserpimzed rat brain cortex slices Differences in calcium-dependency, and in sensitivity to potassium ions J Neurochem 29, 165–170

    Google Scholar 

  • Vargas O, Miranda R, and Orrego F. (1976) Effects of sodium-deficient media and of a calcium lonophore (A-23187) on the release of [3H]-noradrenaline, [14C]-γ-aminoisobutyrate, and [3H]-γ-aminobutyrate from superfused slices of rat neocortex Neuroscience 1, 137–145

    PubMed  CAS  Google Scholar 

  • Vargas O and Orrego F (1976) Elevated extracellular potassium as a stimulus for releasing [3H]-norepinephnne and [14C]-γ-aminoisobutyrate from neocortical slices Specificity and calciumdependency of the process J Neurochem 26, 31–34

    PubMed  CAS  Google Scholar 

  • Varon S, Weinstein H, Baxter C F., and Roberts E (1975) Uptake and metabolism of exogenous γ-aminobutyric acid by subcellular particles in a sodium-containing medium Biochem Pharmacol 14, 1755–1764

    Google Scholar 

  • White R. D and Neal M J (1976) The uptake of L-glutamate by the retina. Brain Res 111, 79–93

    PubMed  CAS  Google Scholar 

  • Winegard S and Shanes A M (1962) Calcium flux and contractility in guinea pig atria. J Gen Physiol 45, 371–394

    Google Scholar 

  • Yu A C H and Hertz L (1982) Uptake of glutamate, GABA, and glutamine into a predominantly GABA-ergic and a predominantly glutamergic nerve cell population in culture J Neurosci Res 7, 23–35

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker James D. Wood

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Walz, W. (1985). Uptake and Release of Amino Acid Neurotransmitters. In: Boulton, A.A., Baker, G.B., Wood, J.D. (eds) Amino Acids. Neuromethods, vol 3. Humana Press. https://doi.org/10.1385/0-89603-077-6:239

Download citation

  • DOI: https://doi.org/10.1385/0-89603-077-6:239

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-077-0

  • Online ISBN: 978-1-59259-608-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics