Skip to main content

Determination of Transmitter Amino Acid Turnover

  • Protocol
Amino Acids

Part of the book series: Neuromethods ((NM,volume 3))

Abstract

Five amino acids have received considerable attention as putative neurotransmitters in mammalian brain; namely, γ-ammobutyric acid (GABA), glycine, glutamate, aspartate, and taurine Fonnum, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschuler R A, Mosinger J L, Harmison G G., Parakkal M H, and Wenthold R J (1982) Aspartate aminotransferase-like immuno-reactivity as a marker for aspartate/glutamate in guinea pig photoreceptors Nature (Lond) 298, 657–659

    CAS  Google Scholar 

  • Altschuler F R, Neises G R, Harmrson G. G., Wenthold R.J., and Fex J (1981) Immunocytochemical localization of aspartate aminotransferase lmmunoreactlvlty in cochlear nucleus of the guinea-pig. Proc Natl Acad Sci USA 78, 6553–6557.

    PubMed  CAS  Google Scholar 

  • Aprison M H and Nadi N S. (1978) Glycine. Inhrbtion from the Sacrum to the Medulla, in Amino Ads as Chemical Transmitturs (Fonnum, F., ed), pp. 531–571, Plenum, New York.

    Google Scholar 

  • Balazs R, Machlyama Y, Hammond B J, Julian T., and Richter D. (1970) The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro Blockem J 116, 445–467.

    CAS  Google Scholar 

  • Baxter C F (1976) Some Recent Advances in Studies of GABA Metabolism and Compartmentatlon, in GABA in Nervous System Function (Roberts E, Chase T N, and Bower D.B. eds), Raven Press, New York

    Google Scholar 

  • Berl S and Clarke D. D (1978) Metabolic Compartmentatron of the Glutamate-Glutamine System, Glial Contribution, in Amzno Acids as Ckemtcal Transmztters (Fonnum, F, ed) pp 691–708, Plenum, New York.

    Google Scholar 

  • Berl S, Clarke D D., and Nrcklas W. J. (1970) Compartmentatlon of titric acid cycle metabolism in brain J. Neurockem 17, 999–1007.

    CAS  Google Scholar 

  • Berl S, Lajhta A., and Waelsch H. (1961) Amino acid and protein metabolism VI. Cerebral compartments of glutamrc acid metabolism J Neurockem 7, 186–197

    CAS  Google Scholar 

  • Bernasconi R, Maitre L, Martin P, and Raschdorf F (1982) The use of inhrbitors of GABA-transaminase for the determinatron of GABA turnover in mouse brain regions an evaluation of aminooxyacetic acid and Gabaculine. J Neurockem. 38, 57–66.

    CAS  Google Scholar 

  • Bertilsson L, Chi-Chiang M, and Costa E. (1977) Application of principies of steady-state kinetics to the estlmatron of γ-aminobutyric acid turnover rate in nuclet of rat brain. J. Pkarmacol Exp Tker. 200, 277–284

    CAS  Google Scholar 

  • Bradford H F and Ward H. K (1976) On glutammase in mammalian synaptosomes Brain Res. 110, 115–125

    PubMed  CAS  Google Scholar 

  • Bradford H F, Ward H K, and Tomas A (1978) Glutamine-a major substrate for nerve endings J Neurockem. 30, 1453–1449

    CAS  Google Scholar 

  • Butterworth R F, Merkel A D, and Landreville F (1982) Regional amino acid drstrrbutron in relation to function in insulin hypoglycemia J Neurockem 38, 1483–1489

    CAS  Google Scholar 

  • Casu M and Gale K (1981) Intracerebral inlectron of gamma vinyl-GABA. method for measuring rates of GABA synthesis in specrfrc brain regions in viva Life Sci 29, 681–688.

    PubMed  CAS  Google Scholar 

  • Cattabeni F., Bugath A, Groppetti A, Maggi A., Parenti M., and Racagni G (1979) GABA and dopamine Their Mutual Regulation in the Negro-Striatal System, in GABA Neurotransmzffers (Krogsgaard-Larsen P., Scheel-Kruger J, and Kofod H., eds.), pp. 107–117, Munksgaard, Copenhagen

    Google Scholar 

  • Chapman A G, Riley K, Evans M C., and Meldrum B. S (1982) Acute effects of sodium valproate and γ-vinyl-GABA on relonal amino acid metabolism in the rat brain Incorporation of 2-[14C]-glucose into amino acids Neurocheln Res. 7, 1089–1105

    CAS  Google Scholar 

  • Cheng S.-C (1972) Compartmentatlon of Trlcarboxyllc Acid Cycle Intermediates and Related Metabolites, in Metabolic Compartmentatlon in the Brazn (Balazs R and Cremer J E, eds), pp 107–118 MacMillan, London

    Google Scholar 

  • Clarke D D, London J, and Garfinkel D (1978) Computer Modeling as an Aid to Understanding Metabolic Compartmentation of the Krebs Cycle in Brain Tissue, in Amino Aczds as Chemzcal Transmitters (Fonnum F., ed.), pp. 725–738, Plenum, New York

    Google Scholar 

  • Collins G G S (1972) GABA-2-oxoglutarate transaminase, glutamate decarboxylase, and the half-life of GABA in different areas of rat brain. Blochem Pharmacol 21, 2849–2853.

    CAS  Google Scholar 

  • Collins G. G. S. (1977) On the Role of Taurine in the Mammalian Central Nervous System, in Essays in Neurochemzstry and Neuropharmacology, Vol. 1 (Youdinl M.B.H., Lovenberg W, Sharman D F, and Lagnado J.R., eds.), John Wiley, London

    Google Scholar 

  • Collins G G S and Probett G. A. (1981) Aspartate and not glutamate is the likely transmitter of the rat lateral olfactory tract fibers Brazn Res. 201, 231–234

    Google Scholar 

  • Costa E., Cheney D L., Mao C. C., and Moroni F (1978) Action of antischizophrenic drugs on the metabolism of γ-aminobutyric acid and acetylcholine in globus pallidus strlatum and n. accumbens Fed Proc 37, 2408–2414

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A, Moroni F, and Peralta E (1979) Glutamic Acid as a Transmitter Precursor and as a Transmitter, in Advances in Biochemistry and Physiology (Filer L.J. et al, eds), Raven, New York

    Google Scholar 

  • Cremer J E, Heath D F, Patel A. J., Balazs R, and Cavanagh J B (1975) An Experimental Model of CNS Changes Associated with Chronie Liver Disease Portocaval Anastomosis in the Rat, in Metabollc Comparfmenfatlon and Neurofransmlsslon (Berl S, Clarke D.D,and Schneider D, eds), pp 461–478, Plenum, New York

    Google Scholar 

  • Cremer J E and Lucas H M (1971) Sodium pentobarbitone and metabolic compartments in rat brain Brazn Res 35, 619–621

    CAS  Google Scholar 

  • Cremer J. E., Sarna G S, Teal H M, and Cunningham V J (1978) Amino Acid Precursors. Their Transport into Brain and Initial Metabolism, in Amino Acids as Chemzcal Transmitters (Fonnum F, ed), pp 669–689, Plenum, New York.

    Google Scholar 

  • Dann O. T. and Carter T. E. (1964) Cycloserine inhibition of gamma-amino butync-alpha-ketoglutarlc transaminase. Bzochem Pharmacol 13, 677–684.

    CAS  Google Scholar 

  • Davidoff R. A., Graham L. T, Shank R P, Werman R, and Aprison M H (1967) Changes in amino acid concentrations associated with loss of spinal interneurons J. Neurochem 14, 1025–1031

    PubMed  CAS  Google Scholar 

  • Engelsen B. and Fonnum F. (1983) Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain Neuroscz. Lett 42, 317–322.

    CAS  Google Scholar 

  • Fahn S. (1976) Regional Distribution Studies of GABA and Other Putative Neurotransmitters and Their Enzymes, in GABA in Nervous Systems (Roberts, E, Chase T.N, and Tower D.B., eds.), pp. 169–186, Raven, New York

    Google Scholar 

  • Fitzpatrick S M, Cooper A J L, and Duffy T. E. (1983) Use of β-methylene-D,L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem. 41, 1370–1383.

    PubMed  CAS  Google Scholar 

  • Flethcher A and Fowler L. (1980) γ-Aminobutyric acid metabolism in rat brain following chronic oral administration of ethanolamine O-sulfate Biochem. Pharmacol. 29, 1451–1454.

    Google Scholar 

  • Fonnum F. (1968) The drstrrbution of lutamate decarboxylase and aspartate transaminase in subceflular fractions of rat and guinea-pig brain. Biochem. J. 106, 401–412.

    PubMed  CAS  Google Scholar 

  • Fonnum F. (ed) (1978) Amino Acids as Chemical Tramsrmtters,NATO Advanced Study Institutes Series, Series A, Life Sciences; Vol 16. Plenum, New York

    Google Scholar 

  • Fonnum F (1981) The Turnover of Transmitter Amino Acids with Special Reference to GABA, in Central Neurotransmztter Turnouucr (Pycock C.J. and Taberner P.V., eds.), pp. 105–124, University Park Press, Baltimore

    Google Scholar 

  • Fonnum J. (1984) Glutamate: A neurotransmitter in mammalian brain. J. Neurochem 42, 1–11.

    PubMed  CAS  Google Scholar 

  • Fonnum F., Storm-Mathisen J, and Divac I. (1981) Biochemical evidence for glutamate as neurotransmitter in the cortico-strratal and corticothalamic fibers in rat brain. Neurosczence. 6, 863–875

    CAS  Google Scholar 

  • Fonnum F. and Walberg F. (1973) An estimatron of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkiqe axon terminals of the cat. Brain Res 54, 115–127.

    PubMed  CAS  Google Scholar 

  • Forchetti C. M., Marco M. J., and Meek J. L. (1982) Serotonin and γ-aminobutyrrc acid turnover after injection into the median raphe and Substance P and D-ala-met-enkephalin amide. J Neurochem 38, 1383–1386

    Google Scholar 

  • Fowler J. and John R A (1972) Active-site-directed irreversible inhibltion of rat brain 4-aminobutyrate aminotransferase by ethanolamine-0-sulphate in vitro and in vivo. Biochem. J 130, 569–573.

    PubMed  CAS  Google Scholar 

  • Freeman M. E, Lane J D, and Smith J E (1983) Turnover rate of amino acid neurotransmltters in regions of rat cerebellum J Neurochem. 40, 1441–1447

    PubMed  CAS  Google Scholar 

  • Fuxe K., Andersson K, Ogren S O, Perez de la Mora M., Schwartz R, Hokfelt T., Eneroth P, Gustafsson J.-Å, and Skeff P (1979) GABA Neurons and Their Interaction with Monoamine Neurons An Anatomical, Pharmacological, and Functional Analysis, in GABA Neurotransmztters (Krogsgaard-Larsen P, Scheel-Kruger J, and Kofod H., eds), pp. 74–94, Munksgaard, Copenhagen

    Google Scholar 

  • Gaitonde M K, Evison E., and Evans G M. (1983) The rate of utllization of glucose via hexosemonophosphate shunt in brain J Neurochem 41, 1253–1260.

    PubMed  CAS  Google Scholar 

  • Gauchy M. L, Kernel M. L., Glowinski J., and Besson M J (1980) In vlvo release of endogenously synthesized [3H]-GABA from the cat substantia nigra and the palhdoentopeduncular nuclei. Bram Res 193, 129–142

    CAS  Google Scholar 

  • Geddes J W and Wood J D. (1984) Changes in the amino acid content of nerve endings (synaptosomes) Induced by drugs that alter the metabolism of glutamate and γ-aminobutync acid J Neurochem 42, 16–24

    PubMed  CAS  Google Scholar 

  • Giorgi O and Meek J, L. (1984) γ-aminobutync acid turnover in rat strlaturn. Effects of glutamate and kainic acid J Neurochem 42, 215–220

    PubMed  CAS  Google Scholar 

  • Graham L T Jr and Aprison M H (1969) Distribution of some enzymes associated with the metabolism of aspartate, glutamate, γ-aminobutyrate, and glutamine in cat spinal cord J, Neurochem 16, 559–566

    CAS  Google Scholar 

  • Guiener R, Markovitz D., Huxtable R, and Bressler R. (1975) Excitabllity modulation by taurine Transmembrane measurements of neuromuscular transmission. J. Neural Sci. 24, 351–359

    Google Scholar 

  • Hamberger A, Chlang G. H., Nylen E S, Scheff S W., and Cotman C W (1979a) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brutn Res 168, 513–530

    CAS  Google Scholar 

  • Hamberger A., Chiang G H, Sandoval E, and Cotman C. W (1979b) Glutamate as a CNS transmitter. II Regulation of synthesis in the releasable pool Brazn Res. 168, 531–541.

    CAS  Google Scholar 

  • Hawkins R A., Mans A. M., Davies D. W., Hubbard L S, and Lu D. M (1983) Glucose availability to individual cerebral structures is correlated to glucose metabolism. J. Neurochem. 40, 1013–1018

    PubMed  CAS  Google Scholar 

  • Hokfelt T., Ljungdahl A, Perez do la Mora M., and Fuxe K (1976) Further evidence that apomorphine Increases GABA turnover in the DA-cell-body rich and DA-nerve-terminals rich areas of the brain Neurosct. Lett. 2, 239–242.

    CAS  Google Scholar 

  • Ionesco M J and Gale K. (1979) Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo Eur J Pharmacol 59, 125–129.

    Google Scholar 

  • Johnson J L (1978) The excltant amino acids, glutamic, and aspartic acids, as transmitter candidates in the vertebrate central nervous system. Prog. Neurobrol 10, 155–202.

    CAS  Google Scholar 

  • Jung M. J, Lippert B., Metcalf B. W., Bohlen P., and Schlechter P J (1977a) γ-Vinyl-GABA (4-aminohexionic acid), a new selective irreversible inhibitor of GABA-T Effects on brain GABA metabolism in mice. J. Neurochem 29, 797–802

    PubMed  CAS  Google Scholar 

  • Jung M. J, Lippert B, Metcalf B W., Schechter P J., Bohlen P., and Sjoerdsma A. (1977) The effect of 4-aminohex-5-ionic acrd (γ-acetylenic GABA, γ-ethynyl GABA), a catalytic inhibrtor of GABA transaminase, on brain GABA metabolism in vivo. J Neurochem 28, 717–723

    PubMed  CAS  Google Scholar 

  • Karlsson G., Fonnum F, Malthe-Sørenssen D, and Storm-Mathrsen J (1974) Effect of the convulsive agent 3-mercaptopropiomc acid on the levels of GABA, other amino acrds, and glutamate decarboxylase in different regions of rat brain Biochem Pharmacol. 23, 3053–3061

    PubMed  CAS  Google Scholar 

  • Kataoka K., Bak I J, Hassler R, Kim J S., and Wagner A (1974) L-glutamate decarboxyIase and cholineacetyltransferase activity in the substantia nigra and the strratum after surgical interruption of the strro-nigral fibers of the baboon Exp Brain Res 19, 217–227.

    PubMed  CAS  Google Scholar 

  • Knierem K M, Medina M. A., and Stavinoha W B (1977) The levels of GABA in mouse brain following tissue inactrvation by mrcrowave irradratron J Neurochem 28, 885–886

    Google Scholar 

  • Kontro P, Marnela K M, and Oja S S (1980) Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas Brazn Res 184, 129–141

    CAS  Google Scholar 

  • Korf J and Venema K (1983) Amino acids in the substantra nigra in rats with strratal lesions produced by kainrc acid. J. Neurochem 40, 1171–1173

    PubMed  CAS  Google Scholar 

  • Kvamme E. and Olsen B E (1980) Substrate mediated regulation of phosphate-activated glutaminase in nervous tissue Brain Res 181, 228–233.

    PubMed  CAS  Google Scholar 

  • Lane J D, Sands M P, Freeman M E, Cherek D R, and Smith J E. (1982) Amino acid neurotransmrtter utilization in discrete rat brain regions is correlated with conditioned emotional response Pharmacol Biochem Behav 16, 329–340

    PubMed  CAS  Google Scholar 

  • Leach M J, Miller A A, O’Donell R A, and Webster R A (1983) Reduced cortical glutamine concentratrons in electrically kindled rats J Neurochem 41, 1492–1494

    PubMed  CAS  Google Scholar 

  • Leong S F., Lai J C K., Lim L., and Clark J. B (1984) The activities of some energy-metabolizing enzymes in nonsynaptic (free) and synaptic mitochondria derived from selected brain regions J Neurochem 42, 1306–1312

    PubMed  CAS  Google Scholar 

  • Loscher W. (1980) Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem 34, 1603–1608.

    PubMed  CAS  Google Scholar 

  • Loscher W. and Vetter M. (1984) Relationship between drug-induced increases of GABA levels in discrete brain areas and different pharmacological effects in rats Blochem Pharmacol 33, 1907–1914

    CAS  Google Scholar 

  • Lund-Karlsen R and Fonnum F (1978) Evidence for glutamate as a neurotransmitter in the cortrcofugal fibers to the dorsal lateral geniculate body and the superior colliculus in rats Brnin Res 151, 457–467.

    Google Scholar 

  • Machiyama Y., Balazs R., Hammond B. J, Julian T, and Richer D. (1970) The metabolism of GABA and glucose in potassium stimulated brain tissue in vitro Biochem J 116, 469–482.

    PubMed  CAS  Google Scholar 

  • Mangan S. L. and Whittaker V P (1966) The distribution of free amino acids in subcellular fractions of guinea pig brain. Biochem. J 98, 128–137

    PubMed  CAS  Google Scholar 

  • Mansky T, Mestres-Ventura P, and Wuttke W (1981) Involvement of GABA of the feedback action of estradiol on gonadrotropin and prolactin release hypothalamic GABA and catecholamine turnover rates. Brazn Res 231, 353–364

    Google Scholar 

  • Mansky T, Duker E, and Wuttke W (1983) Hypothalamic and limbic GABA concentrations and turnover rates and glutamate concentrations following induction of hyperprolactinemia in ovariectomized rats Neuroscl Left 39, 167–272

    Google Scholar 

  • Mao C C., Peralta E, Morini F, and Costa E (1978) The turnover rate of y-aminobutyric acid in the substantra nlgra followmg electrical stimulation or lesioning of the striatonlgral pathways Brain Res 155, 147–152

    PubMed  CAS  Google Scholar 

  • Marco E, Mao C C, Revuelta A, Peralta E, and Costa E (1978) Turnover rates of γ-aminobutyric acid in substantia nigra, n. caudatus, globus pallidus, and n accumbens of rat inlected with cataleptogenic and noncataleptogenic antipsychotics Neuropharmacol 17, 589–596

    CAS  Google Scholar 

  • Martinez-Hernandez A, Bell K P, and Norenberg M D (1977) Glutamine synthetase. Glial localization in brain Science 195, 1356–1358

    PubMed  CAS  Google Scholar 

  • Massieu G H, Tapia R, Pasantes H., and Orteg B. G (1964) Convulsant effect of L-glutamic acid γ-hydrazine by simultaneous treatment with pyridoxal phosphate. Biochem Pharmacol 13, 118–120

    PubMed  CAS  Google Scholar 

  • Matsui Y. and Deguchi T (1977) Effects of Gabaculine, a new potent inhibitor of gamma-aminobutyrate transaminase, on the brain gamma-aminobutyrate content and convulsions in mice Life Sci 20, 1291–1296

    PubMed  CAS  Google Scholar 

  • McGeer E G. and McGeer P L (1978) Localization of glutaminase in the rat neostriatum J Neurochem 32, 1071

    Google Scholar 

  • McLaughlin B J, Wood J, Saito K., Barber R., Vaughn J E, Roberts E, and Wu J-Y. (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum Brazn Res 76, 377–391.

    CAS  Google Scholar 

  • Melis M R and Gale K (1983) Effect of dopamine agonists on y-aminobutyric acid (GABA) turnover in the superior colliculus Evidence that nigrotectal GABA prelections are under influence of dopaminergic transmission. J. Pharmacol. Exp. Ther 226, 425–431.

    PubMed  CAS  Google Scholar 

  • Metcalf B W (1979) Inhibitors of GABA metabolism Bzochem Pharmacol 28, 1705–1712.

    CAS  Google Scholar 

  • Miller L. P, Martin D L., Mazumder A., and Watkins J. R (1978) Studies on the regulation of GABA synthesis Substrate-promoted dissociation of pyridoxal-P from GAD J Neurochem 30, 361–369

    PubMed  CAS  Google Scholar 

  • Minard F N and Mushahwar I K (1966) Synthesis of γ-aminobutyric acid from a pool of glutamic acid in brain after decapitation Life Sci, 5, 1409–1413

    PubMed  CAS  Google Scholar 

  • Minchin M. C W and Beart P M. (1974) Compartmentation of amino acid metabolrsm in the rat dorsal ganglia A metabolic and autoradiographic study. Brain Res. 83, 437–449.

    Google Scholar 

  • Minchin M C W. and Fonnum F (1979) The metabolrsm of GABA and other amino acids in rat substantia nigra slices followmg lesions of the strratonigral pathway. J Neurochem. 32, 203–210.

    PubMed  CAS  Google Scholar 

  • Moroni F, Cheney D L, Peralta E, and Costa E. (1978) Opiate receptor agonists as modulators of γ-aminobutyric acid turnover in the nucleus caudatus, globus pallidus, and substantia nigra J Pharmacol Exp Ther 207, 870–877

    PubMed  CAS  Google Scholar 

  • Moroni F, Lombardi G, Moneti G, and Cortesini C (1983) The release and neosynthesis of glutamrc acid are increased in experimental models of hepatic encephalopathy J. Neurochem 40, 850–854

    PubMed  CAS  Google Scholar 

  • Nadler J. V and Smith E M. (1981) Perforant path lesion depletes glutamate content of fascia dentata synaptosomes Neurosci Lett 3, 275–280

    Google Scholar 

  • Nadler J V, White W F, Vaca K W, Perry B W, and Cotman C W. (1978) Biochemical correlates of transmission mediated by glutamate and aspartate J Neurochem 31, 147–155

    PubMed  CAS  Google Scholar 

  • Neff N. H., Spano P F, Gropetti A, Wang C T, and Costa E. (1971) A simple procedure for calculating the synthesis rate of noreprnephrine, dopamme, and serotonin in rat brain J Pharmacol Exp Ther 176, 701–710

    PubMed  CAS  Google Scholar 

  • Nicklas W J (1983) Relative Contributrons of Neurons and Glia to Metabolism of Glutamate and GABA, in Glutamlne, Glutamate, and GABA in the Central Nervous System (Hertz L., Kvamme E, McGeer E. G, and Schousboe A, eds.), pp. 219–231, Alan R LISS, New York

    Google Scholar 

  • Nicklas W J, Nunez R., Berl S, and Duvoisin R (1979) Neuronal ghal contrrbutrons to transmitter amino acrd metabolism Studies with kamlc acrd-induced lesions of rat striatum J Neurochem 33, 839–844

    PubMed  CAS  Google Scholar 

  • Norenberg M. D and Martinez-Hernandez A. (1979) Fine structural locallzatron of glutamine synthetase in astrocytes of rat branin Brain Res 161, 303–310

    PubMed  CAS  Google Scholar 

  • Okada Y (1982) Fine localization of GABA (γ-Aminobutyric Acid) and GAD (Glutamate Decarboxylase) in a Single Derters Neuron—Significance of the Uneven Distribution of GABA and GAD in the CNS, in Problems IH GABA Research from Brnzn to Bacferia (Okada Y and Roberts E, eds), pp 30–54, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Okada Y and Roberts E (1982) Problems in GABA Research from Brain to Bacterrn Excerpta Medica, Amsterdam

    Google Scholar 

  • Omholt-Jensen B (1984) Metode for måling av TR-GABA ved hemming av GABA-T med GVG. Thesis Oslo University, Dept of Pharmacy

    Google Scholar 

  • Paglusi S. R, Gomes C., Leite J. R, and Troln G (1983) Aminooxyacetic acid-induced accumulation of GABA in the rat brain Interaction with GABA receptors and distribution in compartments Naunyn-Sckrmedeberg’s Arch Pkarmacol 322, 210–215

    Google Scholar 

  • Palfreyman M G, Schechter P J, Buckett W R, Tell G P, and Koch Weser J. (1981) The pharmacology of GABA-transaminase inhibitors. Biochem. Pharmacol. 30, 817–824

    PubMed  CAS  Google Scholar 

  • Patel J A. (1982) The Distribution and Regulation in Nerve Cells and Astrocytes of Certain Enzymes Associated with the Metabolic Compartmentation of Glutamate, in Neurotransmztter lnteraction and Compartmentation (Bradford A.F, ed), pp. 411–429, Plenum, New York.

    Google Scholar 

  • Patel A J., Balazs R, and Richter D (1970) Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain Nature (Lond) 226, 1160–1161

    CAS  Google Scholar 

  • Patel A J, Johnsen A L, and Balazs R (1974) Metabolic compartmentation of glutamate associated with the formation of γ-aminobutyrate J. Neurochem 23, 1271–1279

    PubMed  CAS  Google Scholar 

  • Perez de la Mora M, Fuxe K, Hokfelt T, and Llungdahl A (1977) Evidence for an impulse-dependent GABA accumulation in the substantia nigra after treatment with γ-glutamyl-hydrazide Nettrosci Lett 5, 75–82

    CAS  Google Scholar 

  • Pericic D, Eng N, and Walters J R (1978) Postmortem and aminooxyacetic acid-Induced accumulation of GABA Effect of γ-butyrolactone and picrotoxin. J. Neurochem 30, 767–774.

    PubMed  CAS  Google Scholar 

  • Porter T. G and Martin O L. (1984) Evidence for feedback regulation of glutamate decarboxylase by γ-aminobutyric acid J Neurochem 43, 1464–1467.

    PubMed  CAS  Google Scholar 

  • Racagni G., Cheney D. L., Trabucchi M, Wang C T., and Costa E (1974) Measurements of acetylcholine turnover rate in discrete areas of rat brain. Life Sci. 15, 1961–1975.

    CAS  Google Scholar 

  • Raff M. C, Miller R H, and Noble M. (1983) A glial progenitor cell that develops in vitro into a astrocyte or an oligodendrocyte depending on culture medium Nature (Lond.) 303, 390–392

    CAS  Google Scholar 

  • Rando R. R and Bangerter F. W (1977) The in viva mhibition of GABA transaminase by Gabaculine. Blockem Blopkys Res Commun 76, 1276–1281.

    CAS  Google Scholar 

  • Rassin D L (1972) Amino acids as putative transmitters Failure to bind to synaptic vesicles of guinea-pig cerebral cortex J Neurochem 19, 139–148

    PubMed  CAS  Google Scholar 

  • Rassin D K., Sturman J A, and Gaull G E. (1981) Sulfur amino acid metabolism in the developing rhesus monkey brain. Subcellular studies of taurine, cystemesulfinic acid decarboxylase, y-amino-butyric acid, and glutamic acid decarboxylase. J Neurochem 37, 740–748

    PubMed  CAS  Google Scholar 

  • Reijnierse G. L. A., Veldstra H., and van den Berg C J. (1975) Subcellular localrzation of γ-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain Biochem J 152,469–475

    PubMed  CAS  Google Scholar 

  • Reubi J C (1980) Comparatrve study of the release of glutamate and GABA, newly synthesized from glutamine in various regions of the central nervous system. Neurosci 5, 2145–2150

    CAS  Google Scholar 

  • Revuelta A. V, Cheney D L, and Costa E (1981) Measurements of γ-Aminobutyric Acid Turnover Rates in Brain Nuclei as an Index of Interactions Between γ-Aminobutyrrc Acid and Other Transmitters, in GIufamate as a Neurotrunsmitter (Di Chiara G. and Gessa G L, eds), Raven, New York

    Google Scholar 

  • Salganicoff L and De Robertis E. (1965) Subcellular drstrlbution of the enzymes of the glutamic acid, glutamine, and γ-aminobutyrrc acid cycles in brain J Neurochem. 12, 287–309

    PubMed  CAS  Google Scholar 

  • Sandberg M, Ward H K, and Bradford H F. (1985) Effect of cortrcostrrate pathways lesion on the actrvmes of enzymes involved in synthesis and metabolism of amino acid neurotransmrtters in the striatum J Neurochem 44, 42–47

    PubMed  CAS  Google Scholar 

  • Sarhan S. and Seiler N (1979) Metabolic inhibrtions and subcellular drstribution of GABA J Neurosci Res 4, 399–421

    PubMed  CAS  Google Scholar 

  • Schon F and Kelly J S (1974) Autoradiographic locallzatron of [3H]-GABA and [3H]-glutamate over satellite glial cells. Bram Res 66, 275–288

    CAS  Google Scholar 

  • Schousboe A, Svenneby G, and Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres J Neurochem 29, 299.

    Google Scholar 

  • Shank R P and Aprison M H. (1970) The metabolism in viva of glycine and serine in eight areas of the rat central nervous system J Neurochem 17, 1461–1478.

    PubMed  CAS  Google Scholar 

  • Shank R. P, Aprison M H, and Baxter M H. (1973) Precursors of glycine in the central nervous system Comparison of specific activities in glycine and other amino acids after administration of (U-14C)-glucose, (3,4-14C)-glucose, (l-14C)-glucose, (U-14C)-serine, or (1,5-14C)-citrate to the rat. Brain Res 51, 301–308

    Google Scholar 

  • Shank R P. and Campbell G LeM. (1982) Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum Neurochem. Res 7, 601–616.

    PubMed  CAS  Google Scholar 

  • Shank R P and Campbell G. LeM. (1984) α-Ketoglutarate and malate uptake and metabolism by synaptosomes: Further evidence for an astrocyte-to-neuron metabolic shuttle. J Neurochem 42, 1153–1161.

    PubMed  CAS  Google Scholar 

  • Shank R P, Campbell G LeM, Freitag S. U, and Utter M. F (1981) Evidence that pyruvate carboxylase is an astrocyte-specific enzyme Soc Neurosi Abstr 7, 936

    Google Scholar 

  • Smith J E, Co C, Freeman M E, and Lane J D (1982) Brain neurotransmrtter turnover correlated with morphine-seeking behavior of rats Pharmacol Biochem. Behav 16, 509–519

    PubMed  CAS  Google Scholar 

  • Sterri S H and Fonnum F (1980) Acetyl-CoA-synthesizing enzymes in cholinergrc nerve terminals J Neurochem 35, 249–254

    PubMed  CAS  Google Scholar 

  • Thanki C M., Sugden D., Thomas N J., and Bradford H. F (1983) In viva release from cerebral cortex of [14C]-glutamate synthesized from [U-14Cl-glutamate. J Neurochem 41, 611–617

    PubMed  CAS  Google Scholar 

  • van den Berg C J (1973) A Model of Compartmentation in Mouse Brain Based on Glucose and Acetate Metabolism, in Metabolic Compartmentation in the Brain (Balazs R and Cremer J E, eds), pp 137–166, MacMillan

    Google Scholar 

  • van den Berg C J and Garfinkel D (1971) A simulation study of brain compartments Blockem J 123, 211–218

    Google Scholar 

  • van den Berg C J, Matheson D. F, and Nijenmanting W C (1978) Compartmentation of Amino Acids in Brain The GABA-Glutamine-Glutamate Cycle, in Amino Acids as Neurotmnsmitters (Fonnum, F, ed), pp 709–723, NATO Advanced Study Institutes Series Series A, Lije Sciences, Vol. 16, Plenum, New York

    Google Scholar 

  • van den Berg C J, Matheson D F, Ronda G, Reqnierse G L A, Blokhuis G. G D, Kroon M C, Clarke D D, and Garfinkel D (1975) A Model of Glutamate Metabolism in Brain A Biochemical Analysis of a Heterogenous Structure, in Metabolzc Compartmentation and Neurotransmission, (Berl S, Clarke D D., and Schneider D, eds.), pp 709–723, NATO Advanced Study Institute Series, Vol. 16, Plenum, New York

    Google Scholar 

  • van der Heyden J A M, de Kloet E R, Korf J, and Versteeg D H G (1979) GABA content of discrete brain nuclei and spinal cord of the rat J Neurochem 33, 857–861

    PubMed  Google Scholar 

  • van der Heyden J. A. M. and Korf J (1978) Regional levels of GABA in the brain. Rapid semiautomated assay and prevention of postmortem increase by 3-mercaptopropionic acid J Neurochem. 31, 197–203

    PubMed  Google Scholar 

  • van Gelder N M. (1966) The effect of aminooxyacetic acid on the metabolism of γ-aminobutyric acid in brain Biochem Pharmacol 15, 533–539

    PubMed  Google Scholar 

  • van Kempen G M. J, van den Berg C J, van der Helm H J, and Veldstra H (1965) Intracellular localization of glutamate decarboxylase, γ-aminobutyrate transaminase, and some other enzymes in brain tissue J Neurochem 12, 581–588

    PubMed  Google Scholar 

  • Vincent S R., Kimura H, and McGeer E G (1980) The pharmacohistochemical demonstration of GABA transaminase Neurosci Lett 8, 354–358

    Google Scholar 

  • Walaas I. and Fonnum F (1980) Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in rat brain Neuroscience 5, 1691–1698

    PubMed  CAS  Google Scholar 

  • Wallach D P. (1961) Studies on the GABA pathway. I. The inhibition of γ-aminobutyric acid-α-ketoglutaric acid transaminase in vitro and in viva by U-7524 (aminooxyacetic acid) Biochem Pharmacol, 5, 323–331.

    PubMed  CAS  Google Scholar 

  • Walters J R., Eng N, Pericic D, and Miller L. P (1978) Effects of aminooxyacetic acid and L-glutamic acid-γ-hydrazide on GABA metabolism in specific brain regions. J Neurochem 30, 759–766

    PubMed  CAS  Google Scholar 

  • Ward H. W, Thanki C M., and Bradford H F. (1983) Glutamine and glucose as precursors of transmitter amino acids ex viva studies J Neurochem 40, 855–860

    PubMed  CAS  Google Scholar 

  • Ward H W, Thanki C.M., Peterson D. W., and Bradford H F (1982) Brain glutaminase activity in relation to transmitter glutamate biosynthesis. Biochem. Soc Trans 10, 369–370.

    CAS  Google Scholar 

  • Wenthold R J (1979) Release of endogenous glutamic acid, aspartic acid, and GABA from cochlear nucleus slices. Brazn Res. 162, 338–343

    CAS  Google Scholar 

  • Wenthold R. J. and Altschuler R. A. (1983) Immunocytochemistry of Aspartate Aminotransferase and Glutaminase, in Glutamine, Glutamate, and GABA zn the Central Nervous System (Hertz L, Kvamme E, McGeer E., and Schousboe A., eds), pp. 33–50, Alan Liss, New York

    Google Scholar 

  • Westerberg E, Chapman A. G, and Meldrum B S. (1983) Effect of 2-amino-7-phosphonoheptanoic acid on regional brain amino acid levels in fed and fasted rodents J Neurochem 41, 1755–1760

    PubMed  CAS  Google Scholar 

  • Wiklund L, Toggenburger G., and Cuenod M (1982) Aspartate: Possible neurotransmitter in cerebellar chmbing fibers. Science 216, 78–80.

    PubMed  CAS  Google Scholar 

  • Wood J D (1981) Evaluation of a synaptosomal model for monitoring in viva changes in the GABA and glutamate content of nerve endings Int J Biochem 13, 543–548

    PubMed  CAS  Google Scholar 

  • Wood J D and Kurylo E. (1984) Amino acid content of nerve endings (synaptosomes) in different regions of brain Effects of gabaculine and isonicotinlc acid hydrazide J Neurochem 42, 420–425

    PubMed  CAS  Google Scholar 

  • Wood J D, Russell M P, and Kurylo E (1980) The γ-aminobutyrate content of nerve endings (synaptosomes) in mice after the instramuscular inlection of γ-aminobutyrate-elevating agents. A possible role in anticonvulsant activity. J Neurochem 35, 125–130

    PubMed  CAS  Google Scholar 

  • Wu J.-Y. (1982) Purification and characterization of cysteic/cysteme sulphinic acids decarboxylase and L-glutamate decarboxylase in bovine brain. Proc Nat1 Acad. Sci USA 79, 4270–4274.

    CAS  Google Scholar 

  • Yamatsu K., Yamanishi Y, Ikeda M, Uzuo T., and Okada Y. (1982) Postmortem GABA Increase in Discrete Regions of the Rat Brain—Involvement of GAD and GABA-T Activity, in Problems in GABA from Brazn to Bacteria (Okada Y and Roberts E., eds.), pp. 30–40, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Yoneda Y, Roberts E, and Dietz G. W, Jr (1982) A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine andits negative feedback inhibition by GABA J Neurochem 38, 1686–1694

    PubMed  CAS  Google Scholar 

  • Yu A C H, Dreler J, Hertz L, and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem 41, 1484–1487.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker James D. Wood

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Fonnum, F. (1985). Determination of Transmitter Amino Acid Turnover. In: Boulton, A.A., Baker, G.B., Wood, J.D. (eds) Amino Acids. Neuromethods, vol 3. Humana Press. https://doi.org/10.1385/0-89603-077-6:201

Download citation

  • DOI: https://doi.org/10.1385/0-89603-077-6:201

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-077-0

  • Online ISBN: 978-1-59259-608-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics