Advertisement

Amino Acids pp 117-153 | Cite as

Radioreceptor Assays for Amino Acids and Related Compounds

  • John William Ferkany
Part of the Neuromethods book series (NM, volume 3)

Abstract

The recognition of the significance of amino acids as mediators of chemical neurotransmission in the mammalian central nervous system has grown extensively in recent years, and no fewer than 16 of these simple compounds have been proposed to function as excitatory or inhibitory neurotransmitters in the brain (Enna, 1978a, Watkins and Evans, 1981, Toggenburger et al., 1982, Recasens et al., 1982; Iwata et al., 1982; Baba et al., 1983; Enna and Gallagher, 1983; Foster and Fagg, 1984). As the role of amino acids in neurotransmission has become apparent, the search for analytical methods to investigate the neurochemical and functional aspects of amino acids in brain and peripheral tissues has gained increasing importance.

Keywords

Specific Binding Binding Assay Kainic Acid Brain Membrane Ligand Binding Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilera G. and Parker D. S (1982) Pituitary somatostantin receptors J Biol Chem. 257,1134–1137.PubMedGoogle Scholar
  2. Baba A, Okumura S, Mizuo H., and Iwata H (1983) Inhibition by diazepam and gamma-aminobutyric acid of depolarization-induced release of (14C) cysteine sulfinate and (3H) glutamate in rat hippocampal slices J Neurochem 40,280–284PubMedCrossRefGoogle Scholar
  3. Baudry M, Smith E, and Lynch G (1981a) Influence of temperature,detergents and enzymes on glutamate receptor binding and its regulation by calcium in rat hippocampal membranes Mol. Pharmacol 20,280–286PubMedGoogle Scholar
  4. Baudry M and Lynch G (1981b) Characterization of two (3H)glutamate binding sites in rat hippocampal membranes J Neurochem 36,811–820.PubMedCrossRefGoogle Scholar
  5. Baudry M., Simon R, Smith E., and Lynch G (1983) Regulation by calciumions of glutamate receptor binding in hippocampal slices Eur J Pharmacol 90,161–168PubMedCrossRefGoogle Scholar
  6. Bennet J P (1979) Methods in binding studies, in Neurotansmitter Receptor Binding (Yamamura, H, Enna, S J and Kuhar, M J eds) pp 57–90. Raven Press, New York.Google Scholar
  7. Bernasconi R., Bittiger H, Heid J, and Martin P. (1980) Determination of GABA levels by a (3H)muscimol radioreceptor assay. J Neurochem 34,614–618.PubMedCrossRefGoogle Scholar
  8. Braestrup C and Squires, R F (1977) Benzodiazepine receptors in rat brain characterized by high affinity (3H)diazepam binding Proc Nat. Acad Sci (USA) 9,3805–3809CrossRefGoogle Scholar
  9. Brehm L, Krogsgaard-Larsen P, and Jacobsen P (1979) GABA-uptake inhibitors and structurally related pro-drugs, in GABA-Neurotransmitters (Krogsgaard-Larsen, P, Scheel-Kruger, J, and Kofod, H, eds ), pp 247–262, Aademic Press, New YorkGoogle Scholar
  10. Burt D, Enna S J, Creese I., and Snyder S. H (1975) Dopamine receptor binding in the corpus striatum of mammalian brain Proc Nat Acad Sci (USA) 72,4655–4659CrossRefGoogle Scholar
  11. Burt D R (1980) Basic receptor methods II Problems in interpretation in binding studies, in Receptor Binding Techniques, pp 53–69. Society of Neuroscience, Bethesda, MdGoogle Scholar
  12. Butcher S P, Collins J F, and Roberts P. J (1983) Characterization of the binding of D,L-[3H]2-amino-4-phosphonobutyr ate to L-glutamate-sensitive binding sites on rat brain synaptic membranes. Brit J Pharmacol 80,355–364Google Scholar
  13. Calil H. M., Avery D H., Hollister L. E, Creese I, and Snyder S H (1979) Serum levels of neuroleptics measured by dopamine radioreceptor assay and some clinical observations Psychiatr Res 1,39–44CrossRefGoogle Scholar
  14. Chapman A G, Collins J. F, Meldrum B S, and Westerberg E (1983) Uptake of a novel anticonvulsant 2-amino-7-phosphono (4,5-3H) heptanoic acid into mouse brain. Neurosci. Lett 37,75–80PubMedCrossRefGoogle Scholar
  15. Childers S R, Simantov R., and Snyder S H (1977) Enkephalin radioimmunoassay and radioreceptor assay in morphine-dependent rats Eur J Pharmacol 46,289–293PubMedCrossRefGoogle Scholar
  16. Coyle J T. (1982) The clinical use of antipsychotic medication. Sympos on Clin Pharm of Sympt Control, Med Clin North Am 66,993–1009PubMedGoogle Scholar
  17. Creese I and Snyder S. H. (1977) A simple and sensitive radioreceptor assay for antischizophrenic drugs in blood Nature 270,180–182.PubMedCrossRefGoogle Scholar
  18. Cuatrecasas P and Hollenberg M D (1976) Membrane receptors and hormone action Adv Prot Chem 30,251–451CrossRefGoogle Scholar
  19. Enna S. J and Snyder S. H (1976) A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue J Neurochem 26,221–224PubMedCrossRefGoogle Scholar
  20. Enna S. J and Snyder S. H (1977a) Gamma-aminobutyric acid (GABA) in human cerebrospinal fluid radioreceptor assay. J. Neurochem 28,1121–1124PubMedCrossRefGoogle Scholar
  21. Enna S J. and Snyder S H. (1977b) Influence of enyzmes, ions and detergents on GABA receptor binding in synaptic membranes of rat brain. Mol Pharmacol. 13,422–453.Google Scholar
  22. Enna S. J. (1978a) Amino acid neurotransmitter candidates, in Annual Reports in Medicinal Chemistry (Humber, J., ed.) pp.41–50. Academic Press, New York.Google Scholar
  23. Enna S J. (1978b) Radioreceptor assay techniques for neurotransmitters and drugs, in Neurotransmitter Receptor Binding (Yamamura H., Enna S J., and Kuhar M J eds ) pp 127–139. Raven Press, New YorkGoogle Scholar
  24. Enna S J., Ferkany J. W, and Krogsgaard-Larsen P. (1979) Pharmacological characterization of GABA receptors in different brain regions, in GABA-Neurotransitters (Krogsgaard-Larsen P, Scheel-Kruger J., and Kofod H., eds.) pp. 191–200. Academic Press, New York.Google Scholar
  25. Enna S J (1980a) Radioreceptor assays, in Physico-chemical Methodologies in Psychiatric Research (Hanin I, and Koslow S H,eds.) pp 83–101 Raven Press, New York.Google Scholar
  26. Enna S. J (1980b) Basic receptor methods. I. in Receptor Binding Techniques, pp. 33–52 Society of Neuroscience, Bethesda, MdGoogle Scholar
  27. Enna S J and Gallagher J P. (1983) Biochemical and electrophysiological characteristics of mammalian GABA receptors Int Rev. Neurobiol 24,181–212PubMedCrossRefGoogle Scholar
  28. Fagg G. E, Foster A C., Mena E. E, and Cotman C W. (1982) Chloride and calcium ions reveal a pharmacologically distinct population of L-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci 2,958–965.PubMedGoogle Scholar
  29. Fagg G. E., Mena E E., Monoghan D T, and Cotman C. W. (1983) Freezing eliminates a specific population of L-glutamate receptors in synaptic membranes Neurosci Lett. 38,157–162.PubMedCrossRefGoogle Scholar
  30. Ferkany J. W., Smith L A, Seifert W. E, Caprioh R. M, and Enna S J, (1978) Measurement of gamma-aminobutyric acid (GABA) in blood Life Sci 22,2121–2128.PubMedCrossRefGoogle Scholar
  31. Ferkany J, Zaczek R, Marckl A., and Coyle J. T. (1984) Glutamate-containing dipeptides enhance specific binding at glutamate receptors and Inhibit specific binding at kainate receptors in rat brain Neurosci Lett 44,281–286.PubMedCrossRefGoogle Scholar
  32. Ferkany J and Coyle J T (1983) Specific binding of [3H]-2-amino-7-phosphonoheptanoic acid to rat brain membranes in vitro Life Sci. 33,1295–1305PubMedCrossRefGoogle Scholar
  33. Ferkany J W and Coyle J T (in press) Receptors for excitatory amino acids and excitatory amino acid-like compounds in the mammalian central nervous system, in Neuromethods. Neurochemistry IV— Receptor Binding (Boulton A. A, Baker G B., and Hrdina P, eds ) Humana Press, Inc, Clifton, New JerseyGoogle Scholar
  34. Fields J. Z, Reisme T D, and Yamamura H. I. (1977) Biochemical demonstration of dopaminergic receptors in rat and human brain using (3H)spiroperidol Brain Res 136,578–584PubMedCrossRefGoogle Scholar
  35. Foster A. and Fagg G. (1984) Acidic amino acid binding in mammalian neuronal membranes. their characteristics and relationship to synaptic receptors. Brain. Res Rev. 7,103–184CrossRefGoogle Scholar
  36. Garcin F. and Coyle J. T. (1976) Ontogenetic development of (3H)naloxone binding sites and endogenous morphine-like factors in rat brain, in Opiates and Endogenous Opioid Peptides (Kostelitz, H. W., ed.) pp. 41–48. Elsevier/North Holland, AmsterdamGoogle Scholar
  37. Gould R. J., Murphy K. M., and Snyder S H (1983) A simple sensitive radioreceptor assay for calcium antagonist drugs Life Sci 33,2665–2672.PubMedCrossRefGoogle Scholar
  38. Guidotti A., Konkel D. R, Ebstein B., Corda M G, Wise B C, Krutzsch H, Meek J. L., and Costa E (1982) Isolation, characterization and purification to homogeneity of a rat brain protein (GABA-modulin) Proc Nat Acad Sci. (USA), 79, 6084–6088.CrossRefGoogle Scholar
  39. Hughes J., Smith J W, Kosterlitz H W, Fothergill L. A., Morgan B. A, and Morris A R (1975) Identification of two related pentapeptides from brain with potent opiate agonist activity Nature, 258, 577–578PubMedCrossRefGoogle Scholar
  40. Innis R B, Bylund D B, and Snyder S H (1978) A simple, sensitive and specific radioreceptor assay for beta-adrenergic antagonist drugs. Life Sci. 23,2031–2038.PubMedCrossRefGoogle Scholar
  41. Innis R B., Tune L, Roek R, DePaulo R, U’Prichard D, and Snyder S H (1979) Tricyclic antidepressant radioreceptor assay Eur. J Pharmacol 58,473–477PubMedCrossRefGoogle Scholar
  42. Innis R. B., Manning D. C., Stewart J M, and Snyder S H (1981) (3H)Bradykinen receptor binding in mammalian tissue membranes. Proc Nat Acad Sci (USA), 78,2630–2634.CrossRefGoogle Scholar
  43. Iwata H., Yama gami S, Mizuo H., and Baba A. (1982) Cysteine sulfinic acid in the central nervous system uptake and release of cysteine sulfinic acid by a rat brain preparation J Neurochem 38,1268–1274PubMedCrossRefGoogle Scholar
  44. Kitabgi P, Carraway R., Retschofen J. V, Granier C., Morgat J. L., Menez A., Leeman S., and Freychet P. (1977) Neurotensin. specific binding to synaptic membranes from rat brain Proc Nat. Acad Sci (USA), 74,1846–1850.CrossRefGoogle Scholar
  45. Leeb-Lundberg F, Napios C, and Olsen R. W (1981) Dihydropicrotoxinin binding sites in mammalian brain interaction with convulsant and depressant benzodiazepines Brain Res 216,399–408PubMedCrossRefGoogle Scholar
  46. Lefkowitz F, Roth J, and Pastan I (1970) Radioreceptor assay of adrenocorticotropin hormone. new approach to assay of polypeptide hormones in plasma Science, 170,633–635PubMedCrossRefGoogle Scholar
  47. Leysen, J. E., Nemegeers C J, Tollenaere J P, and Laduron P M. (1978) Serotonergic component of neuroleptic receptors Nature, 272,168–171PubMedCrossRefGoogle Scholar
  48. List, S J. and Seeman P (1981) Resolution of dopamine and serotonin component of (3H)spiperone binding to rat brain regions Proc. Nat Acad Sci (USA), 78,2620–2624.CrossRefGoogle Scholar
  49. London E D and Coyle J. T (1979) Specific binding of (3H)kainic acid to receptor sites in rat brain Mol Pharmacol 15,492–505PubMedGoogle Scholar
  50. Luthin G. R and Wolfe B B. (1984) Comparison of [3H]pirenzepine and [3H]quinuclidinyl benzilate binding to muscarinic cholinergic receptors in rat brain. J Pharmacol Exp. Therap. 228,648–655.Google Scholar
  51. Massotti M, Guidotti H, and Costa E. (1981) Characterization of benzodiazepine and gamma-aminobutyric acid recognition sites and their endogenous modulators J Neurosci. 1, 409–418.PubMedGoogle Scholar
  52. Mohler H and Okada T (1977) Benzodiazepine receptor demonstration in the central nervous system. Science, 198,849–851PubMedCrossRefGoogle Scholar
  53. Monaghan P., McMillis M. D, Chamberlin A. R, and Cotman C W (1983) Synthesis of [3H]-2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes, a selective ligand for the chloride/calcium-dependent class of L-glutamate binding sites. Brain Res. 278,137–144.PubMedCrossRefGoogle Scholar
  54. Moody J, W, Pert C. B, Rivier J., and Brown M. R (1978) Bombesin specrfic binding to rat brain membranes Proc Nat Acad Sci (USA), 75,5372–5376CrossRefGoogle Scholar
  55. Nakata Y, Kusaka Y, Segawa T, Yajima H., and Kitagawa K (1978) Substance P: regional distribution and specific binding to synaptic membranes in rabbit central nervous system. Life Sci 22,259–268PubMedCrossRefGoogle Scholar
  56. Olsen R W. and Leeb-Lundberg F. (1981) Convulsant and anticonvulsant drug binding sites related to the GABA receptor/ionophore system, in Neurotransmitters, Seizures and Epilepsy (Morselli P, Lloyd K, Loscher W, Meldrum B, Chir B and Reynolds E., eds.) pp151–164. Raven Press, New York.Google Scholar
  57. Pasternak G. W., Goodman R., and Snyder S H. (1975) An endogenous morphinelike factor in mammalian brain. Life Sci 16,1756–1770.CrossRefGoogle Scholar
  58. Peroutka S. J and Snyder S H. (1983) Multiple serotonin receptors and their physiological significance Fed. Proc. 42,213–217.PubMedGoogle Scholar
  59. Pitman R N, Minnina K P, and Molinoff P. B. (1980) Ontogeny of beta1 and beta2 adrenergic receptors in rat cerebellum and cerebral cortex Brain Res 188,357–368.CrossRefGoogle Scholar
  60. Recasens M., Varga V., Nanopoulos D, Saadova F., Vincendon G., and Benavides J. (1982) Evidence for cysteine sulfinate as a neuro-transmitter Brain Res 239,153–173PubMedCrossRefGoogle Scholar
  61. Scatchard G (1949) The attraction of proteins for small molecules and ions Ann N Y Acad. Sci 51,660–672CrossRefGoogle Scholar
  62. Simantov R. and Snyder S. H. (1976a) Isolation and structure identification of a morphine-like peptide “enkephalin” in bovine brain Life Sci 18,781–788PubMedCrossRefGoogle Scholar
  63. Simantov R and Snyder S H. (1976b) Morphine-like peptides, leucine enkephalin and methionine enkephalin. interactions with the opiate receptor. Mol Pharmacol 12,987–998.PubMedGoogle Scholar
  64. Simantov R and Snyder S H (1976c) Brain pituitary mechanisms pituitary opiate receptor binding, radioimmunoassays for methionine enkephalin and leucine enkephalin and (3H)enkephalin interactions with the opiate receptor, in Opiates and Endogenous Opioid Peptides (Kostelitz H W, ed ) pp 41–48 Elsevier/North Holland, Amsterdam.Google Scholar
  65. Simantov R, Childers S. R., and Snyder S H. (1977) Opioid peptides. differentiation by radioimmunoassay and radioreceptor assay, Brain Res 135,358–367.PubMedCrossRefGoogle Scholar
  66. Slevin J. T and Coyle J. T (1981) Ontogeny of receptor binding sites for (3H)glutamic acid and (3H)kamic acid in the rat cerebellum J Neurochem. 37,531–533PubMedCrossRefGoogle Scholar
  67. Snyder S. H, Chang K J, Kuhar M. J., and Yamamura H I (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed Proc 34,1915–1921.PubMedGoogle Scholar
  68. Snyder S H (1975) The glycine synaptic receptor in the mammalian central nervous system Br J Pharmacol, 53,473–284PubMedGoogle Scholar
  69. Tallman J. F, Thomas J.W., and Gallager D W (1978) GABAergic modulation of benzodiazepine binding site sensitivity Nature, 274, 383–388.PubMedCrossRefGoogle Scholar
  70. Terenius L and Wahlstrom A. (1974) Inhibitors of narcotic receptor binding in brain extracts and cerebrospinal fluid Acta Pharmacol Toxicol 35,(S1) 55Google Scholar
  71. Terenius L and Wahlstrom A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol. Scand 94,74.PubMedCrossRefGoogle Scholar
  72. Teschenaker H., Opheim K. E., Cox B. M, and Goldstein R. (1975) A peptide-like substance from pituitary that acts like morphine Life Sci 16, 1771–1776.CrossRefGoogle Scholar
  73. Toffano G., Guidotti A, and Costa E (1978) Purification of an endogenous protein inhibitor of the high affinity binding of gamma-aminobutyric acid to synaptic membranes of rat brain. Proc Nat Acad. Sci (USA), 75,4024–4028.CrossRefGoogle Scholar
  74. Toggenburger G, Felix D., Cuenod M., and Henke H (1982) In vitro release of endogenous beta-alanine, GABA and glutamate and electrophysiological effect of beta-alanine in pigeon optic tectum J Neurochem 39,176–183PubMedCrossRefGoogle Scholar
  75. Tune L. E, Creese I, DePaulo R., Slavney P R., Coyle J T., and Snyder S H. (1980) Clinical state and serum neuroleptic levels measured by radioreceptor assay in schizophrenia Am. J Psychiatr. 137,187–190PubMedGoogle Scholar
  76. Watkins J C and Evans R. H. (1981) Excitatory amino acid transmitters Ann. Rev Pharmacol. Toxicol. 21,165–204.CrossRefGoogle Scholar
  77. Williams J D (1982) Cholecystokinin a hormone and a neurotransmitter Biomedical Res 3, 107–121Google Scholar
  78. Yammaura H, Enna S F, and Kuhar M J, eds (1978) Neurotransmitter Receptor Binding Raven Press, New YorkGoogle Scholar
  79. Young A and Snyder S H (1973) Strychnine binding associated with glycine receptors of the central nervous system Proc Nat Acad Sci. USA, 70,2832–2836PubMedCrossRefGoogle Scholar
  80. Zaczek R., Koller K, Cotter R, Heller D., and Coyle J T. (1983) N-acetylaspartyl glutamate an endogenous peptlde with high affinity for a brain “glutamate” receptor. Proc. Nat Acad Sci USA, 80,1116–1119PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • John William Ferkany
    • 1
  1. 1.Nova Pharmaceutical CorporationBaltimoreMaryland

Personalised recommendations