Skip to main content

Radioenzymatic Micromethods for the Quantitation of Biogenic Amines in Brain

  • Protocol
Amines and Their Metabolites

Part of the book series: Neuromethods ((NM,volume 2))

  • 215 Accesses

Abstract

The biogenic amines 5-hydroxytryptamme (5-HT; serotonin), dopamine (DA), noradrenaline (NA), adrenaline (A), and histamine (HA) are present in mammalian brain, in which they play fundamental roles as neurotransmitters. Concentrated in a few brain nuclei and tracts (Dahlstrom and Fuxe, 1964; Fuxe, 1965), they are involved in the regulation of specific brain functions. Their study requires selective dissection techniques to isolate discrete brain areas and sensitive quantitative microtechniques for the determination of amine levels in submilligram amounts of tissue. This is now possible with the combination of micro-anatomical dissection procedures (the “punch” technique) and the development of radioenzymatic micromethods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argiolas, A. and Gessa, G L (1981) A simple radioenzymatic method to measure picogram amounts of DOPA in brain and biological fluids J Neurochem 36, 290–292

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1962a) The enzymatic N-methylation of serotonin and other amines J Pharmacol Exp Ther 138, 28–33

    PubMed  CAS  Google Scholar 

  • Axelrod J. (1962b) Purification and properties of phenylethanolamine-N-methyl transferase J Biol Chem 237, 1657–1660

    PubMed  CAS  Google Scholar 

  • Axelrod J (1972) Phenylethanolamine N-methyl transferase, in The Thyroid and Biogenic Amines (Rall and Kopm, I. J., eds), pp 536–540. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Axelrod J and Tomchick R (1958) Enzymatic O-methylation of epinephrine and other catechols J Biol Chem, 233, 702–705

    PubMed  CAS  Google Scholar 

  • Axelrod J and Weissbach H. (1961) Purification and properties of hydroxyindole O-methyl transferase J Biol Chem 236, 211–213

    PubMed  CAS  Google Scholar 

  • Boulton A A. (1979) Trace Amines in the Central Nervous System, in International Review of Biochemistry, Physiological aud Pharmacological Biochemistry (Tipton, K F ed), pp 179–206 University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Brown D D, Axelrod J, and Tomchick R (1959a) Enzymatic N-Methylation of histamine Nature, (Lond.) 183, 680

    Article  PubMed  CAS  Google Scholar 

  • Brown D D, Tomchick R, and Axelrod, J (1959b) Distribution and properties of a histamine-methylating enzyme J Biol Chem 234, 2948–2950.

    PubMed  CAS  Google Scholar 

  • Brownstein M, Saavedra J M, and Axelrod J (1973) Control of N-acetylserotonin by a β-adrenergic receptor. Mol Pharmacol 9, 605–611

    PubMed  CAS  Google Scholar 

  • Brownstein M, Saavedra J M., Palkovits M., and Axelrod J. (1974) Histamine content of hypothalamic nuclei of the rat Brain Res 77, 151–156

    Article  PubMed  CAS  Google Scholar 

  • Brownstein M, Palkovits M, Saavedra J M, and Kizer J. S (1975) Tryptophan hydroxylase in the rat brain Brain Res 94, 163–166

    Article  Google Scholar 

  • Chevillard C, Barden N, and Saavedra J M (1981a) Twenty-four hour rhythm in monoamine oxidase activity in specific areas of the rat brain stem Brain Res 223, 205–209

    Article  PubMed  CAS  Google Scholar 

  • Chevillard C, Barden N, and Saavedra J. M. (1981b) Estradiol treatment decreases type A and increases type B monoamine oxidase in specific brain stem areas and cerebellum of ovariectomized rats. Brain Res 222, 177–181

    Article  PubMed  CAS  Google Scholar 

  • Correa F M A and Saavedra J M (1981) Increase in histamine concentrations in discrete hypothalamic nuclei of spontaneously hypertensive rats Brain Res 205, 445–451

    Article  PubMed  CAS  Google Scholar 

  • Correa F M A and Saavedra J M. (1983) High histamine levels in specific hypothalamic nuclei of Brattleboro rats lacking vasopressin Brain Res 276, 247–252

    Article  PubMed  CAS  Google Scholar 

  • Coyle J T and Henry D(1973) Catecholamines in fetal and newborn rat brain. J Neurochem 21, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom A and Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system I Demonstration of monoamines in the cell bodies of brain stem neurons Acta Physiol Scand 62,Suppl 232, 1–55

    Google Scholar 

  • Danielson T. J., Boulton A A., and Robertson, H. A. (1977) m-Octopamine, p-octopamine and phenylethanolamine in rat brain A sensitive, specific assay and the effects of some drugs, J Neurochem 29, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Da Prada M and Zurcker G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline, and dopamine within the femtomole range. Life Sci 19, 1161–1174

    Article  PubMed  Google Scholar 

  • Deguchi T and Axelrod J (1972) Sensitive assay for serotonin N-acetyl transferase activity in rat pineal Anal Biochem 50, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Dennis T and Scatton B (1982) A radioenzymatic technique for the measurement of free and conjugated 3,4-dihydroxyphenylethylene-glycol in brain tissue and biological fluids J Neurosci Methods, 6, 369–382

    Article  PubMed  CAS  Google Scholar 

  • Durden D. A., Philips S. R, and Boulton A A (1973) Identification and distribution of β-phenylethylamine in the rat Can J Biochem 51, 995–1002

    Article  PubMed  CAS  Google Scholar 

  • Eik-Nes K. B, and Brizzee K R (1965) Concentration of tritium in brain tissue of dogs given (1,2-3H2)-cortrsol intravenously. Biochem. Biophys Acta, 37, 320–333.

    Google Scholar 

  • Fekete M. I. K, Kanyicska B., and Herman J P (1978) Simultaneous radioenzymatic assay of catecholamines and dihydroxy-phenylacetic acid (dopac), comparison of the effects of drugs on the tuberoinfundibular and striatal dopamine metabolism and on plasma prolactin level Life Sci 23, 1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamme nerve terminals in the central nervous system Acta Physiol Stand 64,Suppl 247, 39–85

    Google Scholar 

  • Helfti F. and Lichtensteiger W (1976) An enzymatic-isotopic method for DOPA and its use for the measurement of dopamine synthesis in rat substantia nigra J Neurochem 27, 647–649

    Article  Google Scholar 

  • Kebabian J W., Saavedra J M., and Axelrod J. (1977) A sensitive enzymatic-radioisotopic assay for 3,4-dihydroxyphenylacetic acid J Neurochem 28, 795–801

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K, DeQuattro, V, Kolloch, R and Miano, L (1980). A radioenzymatic assay for plasma normetanephrine in man and patients with pheochromocytoma. Life Sci., 26, 567–573

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Kopm I J, and Saavedra, J. M (1978) Changes in epinephrine in individual hypothalamic nuclei after immobilization stress Brain Res. 155, 387–390

    Article  PubMed  CAS  Google Scholar 

  • Lowry O H., Rosebrough N J, Farr A L, and Randall R. J (1951) Protein measurement with the Folin phenol reagent J Biol Chem 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Molmoff, P. B. and Axelrod, J (1972) Distribution and turnover of octopamine in tissues. J Neurochem 19, 157–163.

    Article  Google Scholar 

  • Molinoff P. B., Landsberg L, and Axelrod J. (1969) An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines. J Pharmacol. Exp Ther 170, 253–261

    PubMed  CAS  Google Scholar 

  • Molinoff P. B, Weinshilboum R., and Axelrod J (1971) A sensitive enzymatic assay for dopamme-β-hydroxylase J Pharmacol Exp Ther 178, 425–431

    PubMed  CAS  Google Scholar 

  • Palkovits M(1973) Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res 59, 449–450

    Google Scholar 

  • Palkovits M., Brownstem M, and Saavedra J M. (1974a) Serotonin content of the brain stem nuclei in the rat Brain Res 80, 237–249

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Brownstem M, Saavedra J M, and Axelrod, J (1974b) Norepinephrine and dopamine content of the hypothalamic nuclei of the rat Brain Res 77, 137–149

    Article  PubMed  CAS  Google Scholar 

  • Philips S. R., Davis B A, Durden D A, and Boulton A A. (1975) Identification and distribution of m-tyramine in the rat Can J Biochem 53, 65–69

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J. M (1974a) Enzymatic isotopic assay for and presence of β-phenylethylamine in brain J Neurochem 22, 211–216

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J M (1974b) Enzymatic-isotopic method for octopamine at the picogram level Anal Biochem 59, 628–633

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J, M., (1976) 5-Hydroxy-L-tryptophan decarboxylase activity microassay and distribution in discrete rat brain nuclei J Neurochem 26, 585–589.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J. M. (1977) Distribution of serotonin and synthesizing enzymes in discrete areas of the brain. Fed Proc 36, 2134–2141

    PubMed  CAS  Google Scholar 

  • Saavedra J. M. (1979) Microquantitation of neurotransmitters in specific areas of the central nervous system lnt. Rev Neurobiol 21, 259–274

    Article  CAS  Google Scholar 

  • Saavedra J M (1982) Changes in dopamine, noradrenaline, and adrenaline in specific septal and preoptic nuclei after acute immobilization stress. Neuroendocrinology 35, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M (1983) Radioenzymatic assay of biogenic amines, in Methods in Biogenic Amine Research (Parvez S, Nagatsu T, Nagatsu I and Parvez H., eds ), pp 257–283, Elsevler Science Publishers B V, Amsterdam

    Google Scholar 

  • Saavedra J M (1984) β-Phenylethylamine, phenylethanolamine, tyramine and octopamine, in Handbook of Pharmacology Cate-cholamines (Weiner N. and Trendelenburg U., eds), Springer-Verlag, New York (in press)

    Google Scholar 

  • Saavedra J M and Alexander N (1983) Catecholamines and phenylethanolamine N-methyltransferase in selected brain nuclei and in the pineal gland of neurogenically hypertensive rats Brain Res 274, 388–392

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M and Axelrod J (1973) Demonstration and distribution of phenylethanolamine in brain and other tissues Proc Nat1 Acad Scl USA 70, 769–772

    Article  CAS  Google Scholar 

  • Saavedra, J M and Torda, T (1980) Increased brain stem and decreased hypothalamic adrenaline-forming enzyme after acute and repeated immobilization stress in the rat Neuroendocrin 31, 140–146

    Google Scholar 

  • Saavedra, J M and Zivin, J (1976) Tyrosine hydroxylase and dopamine-β-hydroxylase: distribution in discrete areas of the rat limbic system Brain Res 105, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M, Brownstein M., and Axelrod J (1973) A specific and sensitive enzymatic-isotopic microassay for serotonin in tissues. J Pharmacol Exp Ther.186, 508–515.

    PubMed  CAS  Google Scholar 

  • Saavedra J M, Brownstein M, and Palkovits M (1974a) Serotonin distribution in the limbic system of the rat.Brain Res 79, 437–441

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M, Brownstein M, Palkovits M, Kizer S., and Axelrod J (1974b) Tyrosine hydroxylase and dopamine-β-hydroxylase distribution in the individual rat hypothalamic nuclei. J Neurochem 23, 869–871

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M, Coyle J T, and Axelrod J (1974c) Developmental characteristics of phenylethanolamine and octopamine in the rat brain J Neurochem 23, 511–515

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M, Palkovits M, Brownstein M J., and Axelrod J. (1974d) Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region Brain Res 77, 157–165

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J M, Palkovits M, Brownstein M J., and Axelrod J (1974e) Localization of phenylethanolamine N-methyltransferase in the rat brain nuclei Nature (Lond ), 248, 695–696

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J. M, Palkovits, M., Kizer, J S., Brownstein, M and Zrvin, J A (1975) Distribution of biogenic amines and related enzymes in the rat pituitary gland J Neurochem 25, 257–260

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J. M, Brownstein M. J, Kizer J S, Palkovits, M (1976a) Biogenic amines and related enzymes in the circumventricular organs of the rat Brain Res. 107, 412–417

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J. M, Brownstein M. J, and Palkovits M (1976b) Distribution of catechol-O-methyltransferase, histamine N-methyltransferase and monoamine oxidase in specific areas of the rat brain Braub Res 118, 152–156

    Article  CAS  Google Scholar 

  • Saavedra J M, Grobecker H, and Zivin J. (1976c) Catecholamines in the raphe nuclei of the rat. Brain Res 114, 339–345.

    Article  CAS  Google Scholar 

  • Saavedra J M, Grobecker H., and Axelrod J. (1978) Changes in central catecholaminergic neurons in the spontaneously (genetic) hypertensive rat. Circ Res 42, 529–534

    PubMed  CAS  Google Scholar 

  • Saavedra J, Kvetnansky R, and Kopm I J (1979) Adrenaline, noradrenaline and dopamine levels in specific brain areas of acutely immobilized rats Brain Res 160, 271–280

    Article  PubMed  CAS  Google Scholar 

  • Saller Ch F. and Zigmond M J(1978) A radioenzymatic assay for catecholamines and dihydroxyphenylacetic acid Life Sci 23, 1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Schlumpf M (1973) Analytische Mikromethode zur Fluorimetrischen Bestimmung von Monoammen unter Vervendug enter Topo-graphisch Standardisierten Exizisions technik fur Ratten-und Mausegehirn. Doctoral Thesis, N° 5060, Eidgenoessischen Techmschen Hochschule, Zuerich, Switzerland

    Google Scholar 

  • Schlumpf M., Waser P. G, Lichtensteiger W, Langemann H and Schlup P. (1974) Standardized excision of small areas of rat and mouse brain with topographical control. Biochem Pharmacol 23, 2447–2449

    Article  PubMed  CAS  Google Scholar 

  • Smith, A D and Winkler, H (1967) A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem J. 103, 480–482.

    PubMed  CAS  Google Scholar 

  • Snyder S H., Baldessarini R, and Axelrod J (1966) A sensitive and specific enzymatic isotopic assay for tissue histamine J Pharmacol Exp. Ther 153, 544–549

    PubMed  CAS  Google Scholar 

  • Tallman, J F, Saavedra, J M and Axelrod, J. (1976) A sensitive enzymatic-isotopic method for the analysis of tyramme in brain and other tissues J Neurochem 27, 465–469

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K. M and Snyder, S. H(1971) Histamine in rat brain sensitive assay of endogenous levels, formation in vivo and lowering by inhibitors of histidine decarboxylase. J. Pharmacol. Exp. They. 173, 619–633

    Google Scholar 

  • Taylor, K M and Snyder, S H (1972) Isotopic microassay of histamine, histidine, histidine decarboxylase and histamine methyltransferase in brain tissue J Neurochem 19, 1343–1358

    Article  PubMed  CAS  Google Scholar 

  • Vlachakis, N D and DeQuattro, V. (1978). A simple and specific radroenzymatic assay for measurement of urinary normetanephrine Biochem Med. 20, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Vlachakis N. D, Alexander N, Velasquez M T., and Maronde R F. (1979) A radioenzymatic microassay for simultaneous measurement of catecholamines and their deaminated metabolites Biochem Med. 22, 323–331

    Article  PubMed  CAS  Google Scholar 

  • Weissbach H., Redfield B G and Axelrod J (1961) The enzymic acetylation of serotonin and other naturally occurring amines Biochim. Biophys. Acta 54, 190–192

    Article  PubMed  CAS  Google Scholar 

  • Zurcker, G. and Da Prada, M (1979) Radioenzymatic assay of femtomole concentrations of dopa in tissues and body fluids J Neurochem. 33, 631–639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Judith M. Baker

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Saavedra, J.M. (1985). Radioenzymatic Micromethods for the Quantitation of Biogenic Amines in Brain. In: Boulton, A.A., Baker, G.B., Baker, J.M. (eds) Amines and Their Metabolites. Neuromethods, vol 2. Humana Press. https://doi.org/10.1385/0-89603-076-8:87

Download citation

  • DOI: https://doi.org/10.1385/0-89603-076-8:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-076-3

  • Online ISBN: 978-1-59259-607-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics