Skip to main content

Turnover Rate Assessments of Cerebral Neutrotransmitter Amines and Acetylcholine

  • Protocol

Part of the Neuromethods book series (NM,volume 2)

Abstract

The aim of the present review is to summarize the methods used to estimate the turnover of various neurotransmitters of low molecular weight in the intact animal brain First, some introductory remarks and definitions are given. The following description of the terms used is derived mainly from (1969), (1957) and some references therein. The chemical compound whose quantitative behavior will be studied is called a substance and the behavior of the substance is studied in a system Thus, the turnover of the substance acetylcholine (ACh) may be studied in a system, such as the rat striatum or the whole mouse brain In vivo studies of the central nervous system are usually considered to be an open system, meaning that a precursor enters the system and metabolites leave the system. The behavior of a substance is not necessarily uniform in the system, and, therefore, a system may contain several pools or compartments of that substance. A compartment is defined as a quantity of a substance that has distinguishable and uniform kinetics of transformation The boundaries of a compartment may, but do not necessarily, conform to anatomical boundaries, and conversely, anatomical boundaries are not necessarily divisions of the compartments.

Keywords

  • Turnover Rate
  • Decarboxylase Inhibitor
  • Precursor Pool
  • Maximal Specific Activity
  • High Affinity Uptake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/0-89603-076-8:407
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-607-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   219.00
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Adèr J. P and Korf J (1979) Free 3-methoxy-4-hydroxyphenylethylene glycol in the central nervous system of the rat semi-automated fluorimetric assay, turnover and effects of drugs J Neurochem 32, 1761–1768.

    PubMed  Google Scholar 

  • Adèr J P, Muskiet F A, Jeuring H J, and Korf J (1978) On the origin of vanillylmandelic acid and 3-methoxy-4-hydroxy-phenylglycol in the rat brain J Neurochem 30, 1213–1216

    PubMed  Google Scholar 

  • Aghajanian G K, Bloom F E, Lovell, R A, Sheard, M. M, and Freedman D X (1966) The uptake of 5-hydroxytryptamine-3H from the cerebral ventricles autoradiographic localization Biochem Pharmacol 15, 1401–1403

    CAS  Google Scholar 

  • Aghajanian G K and Bloom F E (1967) Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography J Pharmacol Exp Ther 156, 23–30

    PubMed  CAS  Google Scholar 

  • Ansell G. B (1981) The turnover of acetylcholine, in Central Neurotransmitter Turnover (PycockC J and Taberner P V, eds), pp.81–104 Croom Helm, Lon

    Google Scholar 

  • Atkins G L (1969) Multicompartment Models for Biological Sciences, pp.1–79. Methuen & Co, London

    Google Scholar 

  • Atweh G F and Kuhar M J. (1976) Effects of anaesthetics and septal lesions and stimulation on 3H-acetylcholine formation in rat hippocampus Eur J Phamacol 37, 311–319

    CAS  Google Scholar 

  • Badawy A A B. (1982) Mechanisms of elevation of rat brain tryptophan concentration by various doses of sahcylate Br J Pharmacol 76, 211–213.

    PubMed  CAS  Google Scholar 

  • Baumann P. (1975) Metabolism of 5-hydroxytryptophan-14C after intracisternal injection with and without the influence of drugs in the rat brain Psychopharmacologia (Berl ) 45, 39–45

    CAS  Google Scholar 

  • Bischoff S and Korf J (1978) Different localization of histidine decarboxylase and histamine-N-methyltransferase in the rat brain Brain Res 141, 375–379

    PubMed  CAS  Google Scholar 

  • Bischoff S, Scatton B, and Korf J (1979) Biochemical evidence for a transmitter role of dopamine in the rat hippocampus. Bram Res 165, 161–165

    CAS  Google Scholar 

  • Blombery P A, Kopin I J, Gordon E K., Markey S P, and Ebert M H. (1980) Conversion of MHPG to vanillylmandelic acid Arck Gen Psychiatry 37, 1095–1098

    CAS  Google Scholar 

  • Boulton A A., Philips S R and Durden D A. (1973) The analysis of certain amines in tissues and body fluids as their dansyl derivates. J Ckromatogr 82, 137–142

    CAS  Google Scholar 

  • Boulton A. A. (1982) Brain trace amines, in Handbook of Neurochemistry (Lajtha A, ed) vol 1, 2nd ed, pp.189–222, Plenum,New

    Google Scholar 

  • Braestrup C., and Nielsen M (1975) Intra-and extraneuronal formation of the two malor noradrenaline metabolites in the CNS of rats J Pharm Pharmacol 27, 413–419

    PubMed  CAS  Google Scholar 

  • Brodie B B, Costa E, Dlabac A, Neff N H, and Smookler H H. (1966) Application of steady-state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther 154, 493–498

    PubMed  CAS  Google Scholar 

  • Brunello N, Tagliamonte A., Cheney D L, and Costa E. (1981) Effects of immobilization and cold exposure on the turnover rate of acetylcholine in rat brain areas. Neuroscience 6, 1759–1764

    PubMed  CAS  Google Scholar 

  • Brunello N, Cheney D L, and Costa E (1982) Increase in exogenouscholine fails to elevate the content or turnover rate of cortical, striatal or hippocampal acetylcholine. J Neurochem 38, 1160–1163

    PubMed  CAS  Google Scholar 

  • Buccafusco J J (1982) Kinetics of [3H]-choline and [3H]-acetylcholine metabolis minseveral regions of rat brain following intracerebro-ventricular injection of [3H]-choline Biochem Pharmacol 31, 1599–1605

    PubMed  CAS  Google Scholar 

  • Carlsson A., Davis J N, Kehr W, Lmdqvlst M., and Atack C V. A (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activitiesinbram in vivo using an inhibitor of the aromatic amino acid decarboxylase Naunyn Schmiedeberg’s Arch Pharmacol 275, 153–168.

    CAS  Google Scholar 

  • Carlsson A., Holmin T, Lindqvist M, and Siesjov B K (1977) Effect of hypercapma and hypocaprua on tryptophan and tyrosine hydroxylation in rat brain. Acta Physiol Scand 99, 503–509

    PubMed  CAS  Google Scholar 

  • Carlsson A and Lindqvist M (1978) Dependence of 5HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedeberg’s Arch Pharmacol. 303, 157–164

    CAS  Google Scholar 

  • Carlsson A, Kehr W., and Lindqvist M (1976) The role of intraneuronal amine levels in the feedback control of dopamine, noradrenaline and 5-hydroxytryptamine synthesis in rat brain J Neural Transm 39, 1–19

    PubMed  CAS  Google Scholar 

  • Ceder G and Schuberth J (1977) In viva formation and post-mortem changes of choline and acetylcholine in the brain of mice Brain Res 128, 580–584.

    PubMed  CAS  Google Scholar 

  • Cheifetz S and Warsh J J (1980) Occurrence and distribution of 5-hydroxytryptophol in the rat J Neurochem 34, 1093–1099

    PubMed  CAS  Google Scholar 

  • Chow R L, Freeman J J, and Jenden D J (1975) Kinetics of plasma choline in relation to turnover of brain choline and formation of acetylcholine J Neurochem 24, 735–741

    Google Scholar 

  • Cohen E L. and Wurtman R. J. (1975) Brain acetylcholine increase after systemic choline administration. Life Sci 16, 1095–1102.

    PubMed  CAS  Google Scholar 

  • Cohen E L and Wurtman R J (1976) Brain acetylcholine control by dietary choline Science 191, 561–562

    PubMed  CAS  Google Scholar 

  • Collrer B (1969) The preferential release of newly synthesized transmitter by a sympathetic ganglion J Physiol (London) 205, 341–352.

    Google Scholar 

  • Consolo S., Ladinsky H., and Gomeni R (1979) Effect of high plasma choline on brain area acetylcholine content drug intervention Pharmacol. Res. Commun 11, 903–919

    PubMed  CAS  Google Scholar 

  • Corrodi H and Fuxe K (1968) The effect of imipramine on central monoamine neurons J Pharm Pharmacol 20, 230–231

    PubMed  CAS  Google Scholar 

  • Costa E and Neff N. H (1970) Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal monoamines, in Handbook of Neurochemistry vol 4 (LajthaA., ed), pp.45–90 Plenum Press,New

    Google Scholar 

  • Curzon G (1981) The turnover of 5-hydroxytryptamine, in Central Neurotransmitter Turnover (Pycock C J and Taberner P V, eds), pp 59–80 Croom Helm, London

    Google Scholar 

  • Davis J. N, Carlsson A, MacMillam V., and Siesjo B K (1973a) Brain tryptophan hydroxylation dependence on arterial oxygen tension Science 182, 72–74.

    PubMed  CAS  Google Scholar 

  • Davis J N and Carlsson A (1973b) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanaesthetized rat brain. J Neurochem 20, 913–915

    PubMed  CAS  Google Scholar 

  • Davis J. N and Carlsson A (1973c) The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain J Neurochem 21, 783–790.

    PubMed  CAS  Google Scholar 

  • Dedek J, Baumes R., Tien-Duc N., Gomeru R., and Korf J (1979) Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum J Neurochem 33, 687–695.

    PubMed  CAS  Google Scholar 

  • De Met E M and Halaris A. E (1979) Origin and distribution of 3-methoxy-4-hydroxyphenylglycol in body fluids Biochem Pharmacol 28, 3043–3050

    Google Scholar 

  • Di Guillio A M, Gropetti A., Cattabeni F, Galli C L, Maggi A, Algeri S., and Ponzio F (1978) Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons Eur J Pharmacol 52, 201–207

    Google Scholar 

  • Dismukes K and Snyder S H (1974) Histamine turnover in rat brain Brain Res 78, 467–481

    PubMed  CAS  Google Scholar 

  • Domino E F. and Wilson A E. (1972) Psychotropic drug influence on brain acetylcholine utilization Psychopharmacologia 25, 291–298

    PubMed  CAS  Google Scholar 

  • Doteuchi M, Wang, C, and Costa E (1974) Compartmentation of dopamine in rat striatum. Mol. Pharmacol. 10, 225–234

    PubMed  CAS  Google Scholar 

  • Durden D A and Philips R (1980) Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain J Neurochem 34, 1725–1732

    PubMed  CAS  Google Scholar 

  • Eccelston D. and Ritchie I M (1973) Sulphate ester formation from catecholamine metabolites and pyrogallol in rat brain in vivo J Neurochem 21, 635–646

    Google Scholar 

  • Eckernas S.-Å (1977) Plasma choline and cholinergic mechanisms in the brain. Acta Physiol. Scand Suppl. 449, 8–63.

    Google Scholar 

  • Eckernas S.-Å, Sahlstrom L, and Aquilonius S M (1977) In viva turnover rate of acetylcholine in rat brain parts at elevated steady-state concentration of plasma choline. Acta Physiol Scand 101, 404–410

    PubMed  CAS  Google Scholar 

  • Elschisak M A., Maas J. W, and Roth R M (1977) Dihydroxy-phenylacetic acid conjugate natural occurrence and demonstration of probenecid-induced accumulation in rat striatum, olfactory tubercles and frontal cortex. Eur J Pharmacol 41, 369–378

    Google Scholar 

  • Flentge F and Vanden Berg E J (1979) Choline administration and acetylcholine in brain J Neurochem 32, 1331–1333.

    PubMed  CAS  Google Scholar 

  • Freeman J J, Chow R L, and Jenden D. J (1975) Plasma choline its turnover and exchange with brain choline J Neurochem 24, 729–734

    PubMed  CAS  Google Scholar 

  • Freeman J. J, and Jenden D J. (1976) The source of choline for acetylcholine synthesis in brain (mini review) Life Sci. 19, 949–962

    PubMed  CAS  Google Scholar 

  • Fuller R W (1982) Pharmacology of brain epmephrine neurons Ann Rev Pharmacol Toxicol 22, 31–55

    CAS  Google Scholar 

  • Fuller R W, Perry K W, Hemrick S K., and Molloy B B (1981) Lowering of brain epinephrine by inhibition of norepinephrine N-methyltransferase in rats,in Catecholamines Basic and Clinical Frontiers (Usdin E, Kopin I J and Barchas J, eds), pp 186–188 Pergamon, New Yo

    Google Scholar 

  • Gale St W and Maas J (1977) A study of the formation and metabolic disposition of 3,4-dihydroxyphenylethyleneglycol in whole rat brain J Neural Transm 41, 59–72

    Google Scholar 

  • Gessa G. L and Tagliamonte, A (1974) Serum-free tryptophan control of brain concentrations of tryptophan and synthesis of 5-hydroxytryptamine Ciba Foundation Symposium 22, 207–216

    CAS  Google Scholar 

  • Glowinski J, and Baldessarini R. J (1966) Metabolism of norepmephrine in the central nervous system Pharmacol Rev 18, 1201–1238

    PubMed  CAS  Google Scholar 

  • Goldstein M (1966) Inhibition of norepmephrine biosynthesis at the dopamine-β-hydroxylase stage Pharmacol Rev 18, 77–82

    PubMed  CAS  Google Scholar 

  • Groppetti A, Algeri S., Cattabeni F, DiGuilio A M, Galli C, Ponzio F., and Spano P. F (1977) Changes in specific activity of dopamine metabolites as evidence of a multiple compartmentation of dopamine in striatal neurons J Neurochem 28, 193–197

    PubMed  CAS  Google Scholar 

  • Harmar A J. and Horn A. S (1976) Octopamine in mammalian brain. rapid post mortem increase and effects of drugs J Neurochem 26, 987–993.

    PubMed  CAS  Google Scholar 

  • Haubrich D. R and Chippendale T J, (1977) Regulation of acetylcholine synthesis in nervous tissue (mini review). Life Sci. 20, 1465–1478

    PubMed  CAS  Google Scholar 

  • Haubrich D R, Wang, P F L, Clody D E, and Wedeking P W (1975) Increase in rat Brain acetylcholine induced by choline or deanol Life Sci. 17, 975–980

    PubMed  CAS  Google Scholar 

  • Hutson R H, Knott P J, and Curzon G (1976) Control of brain tryptophan concentration in rats on a high fat diet Nature (Lond ) 262, 142–143.

    CAS  Google Scholar 

  • Hrdina P D (1974) Metabolism of brain acetylcholine and its modification by drugs Drug Metabol Rev 3, 89–129

    CAS  Google Scholar 

  • Iversen L L and Glowinski J (1966) Regional studies of catecholamines in the rat brain II Rate of turnover of catecholamines in various brain regions J Neurochem 13, 671–682

    PubMed  CAS  Google Scholar 

  • Jackman G, Snell J, Skews H and Bobik A (1982) Effects of noradrenergic neuronal activity on 3,4-dihydroxyphenylethylene glycol (DHPG) levels Quantitation by high performance liquid chromatography Life Sci 31, 923–929

    PubMed  CAS  Google Scholar 

  • Javoy F and Glowinski J (1971) Dynamic characteristics of the functional compartment of dopamine in dopaminergic terminals of the rat striatum J Neurochem 18, 1305–1311

    PubMed  CAS  Google Scholar 

  • Javoy F, Youdim M, Aged Y and Glowinski J (1973) Early effect of monoamine oxidase inhibitors on dopamine metabolism and monoamme oxidase activity in the neostriatum in the rat J Neural Transm 34, 279–289

    PubMed  CAS  Google Scholar 

  • Jenden D J (1977) Estimation of acetylcholine and the dynamics of its metabolism, in Cholinergic Mechanisms and Psychopharmacology (Jenden E D, ed) pp 139–162, Plenum Press, New Y

    Google Scholar 

  • Jenden D J, Chow R W, Silverman J A., Stemborn J A, Roch M, and Booth R A (1974) Acetylcholine turnover estimation in brain by gas chromatography/mass spectrometry Life Sci. 14, 55–63

    PubMed  CAS  Google Scholar 

  • Jenden D. J, Jope R S., and Weller M H. (1976) Regulation of acetylcholine synthesis does cytoplasmic acetylcholine control high affinity choline uptake? Science 194, 635–637

    PubMed  CAS  Google Scholar 

  • Jones R S. G, Juorio A. V and Boulton A. A (1983) Changes in levels of dopamine and tyramine in the rat caudate nucleus following alterations of impulse flow in the nigrostriatal pathway J Neurochem 40, 396–406

    PubMed  CAS  Google Scholar 

  • Jope R S. (1982) Effects of phosphatidylcholine administration to rats on choline in blood and choline and acetylcholine in brain J Pharmacol Exp Ther 220, 322–328

    PubMed  CAS  Google Scholar 

  • Joseph M.H and Kenneth G A (1983) Stress-induced release of 5-HT in the hippocampus and its dependence on increased tryptophan availability an in vivo electrochemical study Brain Res 270, 251–257.

    PubMed  CAS  Google Scholar 

  • Karlén B, Lundgren G., Lundm J., and Holmstedt B (1982) On the turnover of acetylcholine in mouse brain influence of dose size of deuterium labelled choline given as precursor Biochem Pharmacol 31, 2867–2872

    PubMed  Google Scholar 

  • Karoum F, Neff N H, and Wyatt R J (1976) Distribution and turnover rate of vanillylmandelic acid and 3-methoxy-4-hydroxyphenylglycol in rat brain J Neurochem 27, 35–35

    Google Scholar 

  • Karoum F., Neff N.H, and Wyatt R J (1977) The dynamics of dopamine metabolism in various regions of rat brain. Eur J. Pharmacol 44, 311–318

    PubMed  CAS  Google Scholar 

  • Kehr W. (1976) 3-Methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vlvo. Naunyn-Schmiedeberg’s Arch. Pharmacol 293, 209–215

    CAS  Google Scholar 

  • Kehr W (1981) 3-Methoxytyramine and normetanephrine as indicators of dopamine and noradrenaline release in mouse brain in vivo J Neural Transm 50, 165–178

    PubMed  CAS  Google Scholar 

  • Koe B K and Weissman A (1966) p-Chlorophenylalanine a specific depletor of brain serotonin J Pharmacol Exp Ther 154, 499–516

    PubMed  CAS  Google Scholar 

  • Kohno Y, Tanaka M, Nakagawa R, Toshima N, and Nagasaki N. (1981) Regional distribution and production rate of 3-methoxy-4-hydroxyphenylethyleneglycol sulphate (MHPG-SO4) in rat brain, J Neurochem 36, 286–289

    PubMed  CAS  Google Scholar 

  • Korf J (1981) Turnover of neurotransmitters in the brain an introduction, in Central Neurotransmitter Turnover (Pycock C J and Taberner P V, eds), pp 1–19, Croom Helm, Lon

    Google Scholar 

  • Korf J, Praag H M van and Sebens J B. (1972) Serum tryptophan decreased, brain tryptophan increased and brain serotonin synthesis unchanged after probenecid loading Brain Res 42, 239–242.

    PubMed  CAS  Google Scholar 

  • Korf J, Grasdijk L, and Westerink B H. C (1976) Effects of electrical stimulation of the nigrostriatal pathway of the rat on dopamine metabolism J Neurochem 26, 579–584

    PubMed  CAS  Google Scholar 

  • Korf J, Venema K, and Postema F (1974) Decarboxylation of exogenous L-5-hydroxytryptophan after destruction of the cerebral raphé system J Neurochem 23, 249–252

    PubMed  CAS  Google Scholar 

  • Kuhar M J and Murrin L C. (1978) Sodium-dependent, high affinity choline uptake (short review) J Neurochem 30, 15–21

    PubMed  CAS  Google Scholar 

  • Lane J D. and Aprison M. H (1978) The flux of radioactive label through components of the serotonergic system following the injection of (3H) tryptophan product-precursor anomalies providing evidence that serotonin exists in multiple pools. J Neurochem 30, 671–678

    PubMed  CAS  Google Scholar 

  • Lane J D, Co C T and Smith J E. (1977) Determination of simultaneous turnover of serotonin, dopamine and norepmephrine in the telencephalon of unrestrained, behaving rats Life Sci 21, 1101–1108

    PubMed  CAS  Google Scholar 

  • Langer S Z (1974) Selective metabolic pathways for noradrenaline in the peripheral and in the central nervous system. Med Biology 52, 372–383

    CAS  Google Scholar 

  • Le Roy Blank C, Sasa S, Isernhagen R, Meyerson L R, Wassil D, Wong D, Modak A T, and Stavinoha W B (1979) Levels of norepinephrine and dopamine in mouse brain regions following microwave inactivation—rapid post-mortem clegradation of striatal dopamine in decapitated animals J Neurochem 33, 213–219

    Google Scholar 

  • Lefresne P, Guyenet P and Glowinski J (1973) Acetylcholine synthesis from (214C) pyruvate in rat striatal slices J Neurochem 20, 1083–1097.

    PubMed  CAS  Google Scholar 

  • LiP P, Warsh J J and Godse D D (1981) 3,4-Dihydroxyphenyl-ethylene glycol (DHPG) formation the major route of rat brain norepinephrine metabolism Progr Neuro-Psychopharmacol 5, 531–535

    Google Scholar 

  • Li P P, Warsh J J., and Godse D D (1983) Rat brain norepinephrine metabolism substantial clearance through 3,4-dihydroxyphenyl-ethylene glycol formation J Neurochem 41, 1065–1071

    PubMed  CAS  Google Scholar 

  • Lin R C, Costa E, Neff N H, Wang E T, and Ngai S H (1966) In viva measurement of 5-hydroxytryptamine turnover rate in the rat brain from the conversion of C14-tryptophan to C14-5-hydroxytryptamine J Pharmacol Exp Ther 170, 232–238

    Google Scholar 

  • Madras B K, Cohen E L, Fernstrom J D., Larm F, Munro H. N., and Wurtman R J (1973) Dietary carbohydrate increases brain tryptophan and decreases serum-free tryptophan Nature (Lond.) 244, 34–35

    CAS  Google Scholar 

  • Maeyama K, Watanabe T., Yamatodani A, Taguchi Y, Kambe H., and Wada H (1983) Effect of α-fluoromethyl histidine on the histamine content of the brain of W/Wv mice devoid of mast cells: turnover of brain histamine J Neurochem 41, 128–134

    PubMed  CAS  Google Scholar 

  • Martres M P., Baudry M, and Schwartz J C (1975) Histamine synthesis in the developing rat brain evidence for a multiple compartmentation Brain Res 83, 261–275

    PubMed  CAS  Google Scholar 

  • Meek J L and Neff N H (1973) The rate of formation of 3-methoxy-4-hydroxyphenylethyleneglycol sulphate in brain as an estimate of the rate of formation of norepmephrine J Pharmacol Exp. Ther 184, 570–575

    PubMed  CAS  Google Scholar 

  • Molenaar P.C, Nicholson V. J, and Polak R L (1973) Subcellular localization of newly formed (3H) acetylcholine in rat cerebral cortex in vitro J Neurochem 21, 667–678

    CAS  Google Scholar 

  • Moroni F, Malthe-SØrensen D, Cheney D L, and Costa E (1978) Modulation of ACh turnover in the septal-hippocampal pathway by electrical stimulation and lesioning Brain Res 150, 333–341

    PubMed  CAS  Google Scholar 

  • Morot-Gaudry Y, Hamon M, Bourgom S, Ley J. P, and Glowinski J. (1974) Estimation of the rate of 5-HT synthesis in the mouse brain by various methods Naunyn-Schmiedeberg’s Arch Pharmacol 282, 223–238

    CAS  Google Scholar 

  • Mosnaim A. D, Inwang E E, Sugerman J H., De Martmi W J and Sabelli H C (1973) Ultraviolet spectrophotometric determination of 2-phenylethylamine in biological samples and its possible correlation with depression. Biol. Psychiatry 6, 235–257

    PubMed  CAS  Google Scholar 

  • Murray T F., Blaker W D, Cheney D. L., and Costa E (1982) Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosme analogs. J Pharmacol Exp Ther. 222, 550–554.

    PubMed  CAS  Google Scholar 

  • Murrin L E., and Kuhar M.J. (1976) Activation of high-affinity choline uptake in vitro by depolarizing agents Mol Pharmacol 12, 1082–1090

    PubMed  CAS  Google Scholar 

  • Neckers L M and Meek J L (1976) Measurements of 5HT turnover rate in discrete nuclei of rat brain Life Sci 19, 1579–1584

    PubMed  CAS  Google Scholar 

  • Neff N H. and Tozer T N. (1968) In vivo measurement of brain serotonin turnover Adv Pharmacol. 6A, 97–109

    Google Scholar 

  • Neff N H., Spano P F, Groppetti A, Wang C T, and Costa E (1971) A simple procedure for calculating the synthesis rate of norepmephrine, dopamine and serotonin in rat brain J Pharmacol Exp Ther 176, 701–710

    PubMed  CAS  Google Scholar 

  • Nielsen M (1976) Estimation of noradrenaline and its major metabolites synthesized from (3H) tyrosine in the rat brain J Neurochem 27, 493–500

    PubMed  CAS  Google Scholar 

  • Nielsen M. and Braestrup C (1976) A method for the assay of conjugated 3,4-dihydroxyphenylglycol, a major noradrenaline metabolite in the rat brain. J Neurochem 27, 1211–1217

    PubMed  CAS  Google Scholar 

  • Nielsen M and Braestrup C (1977) Chronic treatment with desipramine caused a sustained decrease of 3,4-dihydroxyphenylglycol sulphate and total 3-methoxy-4-hydroxyphenylglycol in the rat brain Naunyn-Schmiedeberg’s Arch Pharmacol 300, 87–92

    CAS  Google Scholar 

  • Nieoullon A, Chéramy A, and Glowinski J (1977) Release of dopamine in vivo from cat substantia nigra Nature (Lond ) 266, 375–376

    CAS  Google Scholar 

  • Nordberg A (1977) Apparent regional turnover of acetylcholine in mouse brain Acta Physiol Scand Suppl 445, 1–

    CAS  Google Scholar 

  • Nordberg A and Sundvall A (1976) Brosynthesis of acetylcholine in different brain regions in vivo following alternative methods of sacrifice by microwave irradiation Acta Physiol Scand 98, 307–317

    PubMed  CAS  Google Scholar 

  • Oishi T and Wurtman R J (1982) Effect of tyrosine on brain catecholamine turnover in reserpine-treated rats J Neurol Trasm 53, 101–108

    CAS  Google Scholar 

  • Paden C. M. (1979) Disappearance of newly synthesized and total dopamine from the striatum of the rat after inhibition of synthesis evidence for a homogeneous kinetic compartment. J Neurochem 33, 471–479

    PubMed  CAS  Google Scholar 

  • Papeschi R (1977) The functional pool of brain catecholamines its size and turnover rate Psychopharmacology 55, 1–7

    PubMed  CAS  Google Scholar 

  • Pardridge W M (1979) Tryptophan transport through the blood-brain barrier in vivo measurement of free and albumin-bound amino acid Life Sci 25, 1519–1528

    PubMed  CAS  Google Scholar 

  • Perez-Cruet J, Tagliamonte A, Tagliamonte P, and Gessa G L (1972) Changes in brain serotonin metabolism associated with fasting and satiation in rats Life Sci 11, 31–39

    CAS  Google Scholar 

  • Philips S A and Boulton A. A. (1979) The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum J Neurochem 33, 159–167

    PubMed  CAS  Google Scholar 

  • Philips S R, Rozdilsky B, and Boulton A A (1978) Evidence for the presence of m-tyramine, p-tyramine, tryptamine and phenyl-ethylamme in the rat brain and several areas of the human brain Biol Psychiatry 13, 51–57

    PubMed  CAS  Google Scholar 

  • Racagni G, Trabucci M, and Cheney D L (1975a) Steady state concentrations of choline and acetylcholine in rat brain parts during a constant rate infusion of deuterated choline Naunyn-Schmiedeberg’s Arch Pharmacol 290, 99–105

    CAS  Google Scholar 

  • Racagni G., Cheney D L, Trabucci M, Wang C, and Costa E (1975b) Measurement of acetylcholine turnover rate in discrete areas of rat brain Life Sci 15, 1961–1975

    Google Scholar 

  • Racagni G, Cheney D L, Zsilla G, and Costa E (1976) The measurement of acetylcholine turnover rate in brain structures Neuropharmacology 15, 723–736

    PubMed  CAS  Google Scholar 

  • Richards J G (1977) Autoradiographic evidence for the selective accumulation of (3H) 5HT by supra-ependymal nerve terminals. Brain Res 134, 151–157

    PubMed  CAS  Google Scholar 

  • Richter J A. and Marchbanks R M (1971) Synthesis of (3H)-acetylcholine pools by subcellular fractions of cerebral cortex slices incubated with (3H) choline J Neurochem 18, 705–712

    PubMed  CAS  Google Scholar 

  • Robertson J S (1957) Theory and use of tracers in determining transfer rates in biological systems Physiol Rev 37, 133–154

    PubMed  CAS  Google Scholar 

  • Rospars J P, Lefresne P, Beaujoin J C, and Glowinski J (1977) Effect of external ACh and of atropine on 14C-ACh synthesis and release in rat cortical slices Naunyn-Schmiedeberg’s Arch Pharmacol 300, 153–161

    CAS  Google Scholar 

  • Rommelspacher H. and Kuhar M J (1974) Effect of electrical stimulation on acetylcholine levels in the central cholinergic nerve terminals Brain Res 81, 243–251

    PubMed  CAS  Google Scholar 

  • Saavedra J M. and Axelrod J (1973) Demonstration and distribution of phenylethylanolamine in brain and other tissues Proc Natl Acad Sci (USA) 70, 769–772

    CAS  Google Scholar 

  • Saavedra J M, and Axelrod J (1973) Effects of drugs on the tryptamine content of rat tissues J Pharmacol Exp Ther 185, 523–529

    PubMed  CAS  Google Scholar 

  • Saelens J K, Simke J P, Schuman J., and Allen M P (1974) Studies with agents which influence acetylcholine metabolism in mouse brain Arch Intern Pharmacodyn Ther 209, 250–258

    CAS  Google Scholar 

  • Scatton B (1982) Brain 3,4-dihydroxyphenylethyleneglycol levels are dependent on central noradrenergic neuron activity Life Sci 31, 495–504

    PubMed  CAS  Google Scholar 

  • Scatton B, Pelayo F, Dubocovick M L, Langer S Z, and Bartholini G (1979) Effects of clonidine on the cerebral adrenaline turnover and the adrenaline release in nucleus tractus solitarii of the rat, in Presynaptic Receptors, Adv Biosci 18, (eiLanger S Z, Starke K and Dubocovick M L, eds) pp 231–236, Pergamon, Oxford

    Google Scholar 

  • Schanberg S M, Schildkraut J J, Breese G R, and Kopin I J (1968) Metabolism of normetanephrine-H3 in rat brain—identification of conjugated 3-methoxy-4-hydroxyglycol as the major metabolite Biochem. Pharmacol 17, 247–254

    PubMed  CAS  Google Scholar 

  • Schmidt D E and Buxbaum D M (1978) Effect of acute morphione administration on regional acetylcholine turnover in the rat Brain Res 147, 194–200

    PubMed  CAS  Google Scholar 

  • Schmidt D E and Wecker L. (1981) CNS effects of choline administration evidence for a temporal dependence Neuropharmacology 20, 535–539

    PubMed  CAS  Google Scholar 

  • Schubert J, Sparf B., and Sundvall A. (1969) A technique for the study of acetylcholine turnover in mouse brain in vivo J Neurochem 16, 693–700

    Google Scholar 

  • Schubert J. (1974) Labelled 5-hydroxytryptamine and 5-hydroxyin-doleacetic acid formed in vivo from 3H-tryptophan in rat brain effect of probenecid. Acta Physiol Scand 90, 401–408

    PubMed  CAS  Google Scholar 

  • Schutte H H (1976) Het metabolisme van serotonine in rattehersenen Thesis, University of Groningen.

    Google Scholar 

  • Sedvall G C, Weise V K, and Kopin I. J (1968) The rate of noreplnephrine synthesis measured in vivo during short intervals influence of adrenergic nerve impulse activity J Pharmacol Exp Ther 159, 274–282

    PubMed  CAS  Google Scholar 

  • Sharman D F (1981) The turnover of catecholamines, in Central Neurotransmitter Turnover (Pycock C J and Talberner P V, eds) pp.20–58 Croom Helm, Lon

    Google Scholar 

  • Shields P J and Eccleston D (1972) Evidence for the synthesis and storage of 5-hydroxytryptamine in two separate pools in the brain J Neurochem 20, 881–888

    Google Scholar 

  • Sims N. R, Marek K L, Bowen D M, and Davison A. N. (1982) Productlon of (14C) acetylcholine and (14C) carbondioxide from (U-14C) glucose in tissue prisms from aging rat brain. J Neurochem 38, 488–492

    PubMed  CAS  Google Scholar 

  • Sloan J W, Martin W R, Clements T H, Buchwald W F, and Bridges S R (1975) Factors influencing brain and tissue levels of tryptamine species, drugs and lesions J. Neurochem 24, 523–532

    PubMed  CAS  Google Scholar 

  • Snodgrass S R and Horn A S. (1973) An assay procedure for tryptamine in brain and spinal cord using its [3H]-dansyl derivative. J Neurochem 21, 687–696

    PubMed  CAS  Google Scholar 

  • Stavinoha W B, Modak A T and Weintraub S T (1976) Rate of accumulation of acetylcholine in discrete regions of the rat brain after dichlorvos treatment J Neurochem 27, 1375–1378

    PubMed  CAS  Google Scholar 

  • Sugden R F and Eccleston D (1971) Glycol sulphate ester formation from (14C) noradrenaline in brain and the influence of a COMT inhibitor J Neurochem 18, 2461–2468

    PubMed  CAS  Google Scholar 

  • Suzkiw J B and O’Leary M E (1982) Differential labeling of depot and active acetylcholine pools in nondepolarized and potassium-depolarized rat brain synaptosomes J Neurochem 38, 1668–1675

    Google Scholar 

  • Svensson T H and Waldeck B (1969) On the significance of central noradrenaline for motor activity experiments with a new dopamine β-hydroxylase inhibitor Eur J Pharmacol 7, 278–282

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P., Perez-Cruet J, and Cessa G L (1971a) Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis Nature New Biol 229, 125–126

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Perez-Cruet J, Stern S, and Gessa G. L (1971b) Effect of psychotropic drugs on tryptophan concentration in the rat brain J Pharmacol Exp Ther 177, 475–480

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Gessa R, Duce M, Maffei C, and Gessa G L. (1971c) Increase of Brain tryptophan by probenecid Riv Farm. Ther 11 207-213

    Google Scholar 

  • Taghamonte A, Biggie G., Vargiu L, and Gessa G L (1973) Free tryptophan in serum controls brain tryptophan level and serotonin synthesis Life Sci 12, 277–287

    Google Scholar 

  • Tappaz M L. and Pulol J-F (1980) Estimation of the rate of tryptophan hydroxylation in vivo a sensitive microassay in discrete rat brain nuclei. J Neurochem 34, 933–940

    PubMed  CAS  Google Scholar 

  • Taylor K M and Snyder S H (1971) Histamine in rat brain sensitive assay of endogenous levels, formation in vivo and lowering by inhibitors of histidine decarboxylase. J Pharmacol Exp Ther 179, 619–633.

    PubMed  CAS  Google Scholar 

  • Tracqui P, Brézillon P, Staub J F, Morot-Gaudry Y, Hamon M, and Perault-Staub A M (1983a) Model of brain serotonin metabolism I Structure determination-parameter estimation Am J Physiol 244, R193–R205

    PubMed  CAS  Google Scholar 

  • Tracqui P., Morot-Gaudry-Y, Staub J, F., Brézillon P, Perault-Staub A M, Bourgoin S, and Hamon M (1983b) Model of Brain serotonin metabolism. II Physiological interpretation Am J Physiol 244, R206–R215.

    PubMed  CAS  Google Scholar 

  • Trommer B A, Schmidt D E, and Wecker L (1982) Exogenous choline enhances the synthesis of acetylcholine only under conditions of increased cholinergic neuronal activity. J Neurochem 39, 1704–1709

    PubMed  CAS  Google Scholar 

  • Tuček S (1983) The synthesis of acetylcholine, in Handbook of Neurochemistry, 2nd edition, vol 4 (Lajtha, A, ed.), pp 219–249 Plenum Press, New York

    Google Scholar 

  • Tuček S (1985) Regulation of acetylcholine synthesis in the brain J Neurochem 44, 11–24

    PubMed  Google Scholar 

  • Van der Krogt J A, Van Valkenburg C F M, and Van der Leden A (1981) Simultaneous analysis of dopamine synthesis and breakdown in rat brain by HPLC-ECD after intravenously administered 3H-tyrosine Abstract 438 8th Meeting Int Soc Neurochem, Nottingham, U K

    Google Scholar 

  • Van Valkenburg C F M, Van der Krogt J A, and Moleman P (1983) Dopamine turnover compartmentation in rat brain methodological aspects 5th Catecholamine Symposium, Goteborg, abstract 501

    Google Scholar 

  • Van Wijk M, Sebens J B, and Korf J (1979) Probenecid-induced increase of 5-hydroxytryptamine synthesis in rat brain, as measured by formation of 5-hydroxytryptophan Psychopharmacology 60, 229–235.

    PubMed  Google Scholar 

  • Van Wijk M and Korf J (1981) Post-mortem changes of 5-hydroxy-tryptamine and 5-hydroxyindoleacetic acid in mouse brain and their prevention by pargyline and microwave irradiation Neurochem Res 6, 425–430

    PubMed  Google Scholar 

  • Verdié M., Rose C, and Schwartz J C. (1977) Turnover of cerebral histamine in a stressful situation Brain Res 129, 107–119.

    Google Scholar 

  • Versteeg D H.G Van der Gugten J and Van Ree J. M (1975) Regional turnover and synthesis of catecholamines in rat hypothalamus Nature (Lond ) 256 502–50

    CAS  Google Scholar 

  • Versteeg DHG, Tanaka M, and De Kloet E R (1978) Catecholamine concentration and turnover in discrete regions ot the brain of the homozygous Brattleboro rat deficient in vasopressin Endocrinology 103, 1654–1661

    PubMed  CAS  Google Scholar 

  • Vocci F J, Karbowski M J, and Dewey W L. (1979) Apparent in vivo acetylcholine turnover rate in whole mouse brain evidence for a two compartment model by two independent kinetic analysis J Neurochem32, 1417–1422

    PubMed  CAS  Google Scholar 

  • Walters J R and Roth R M (1974) Dopaminergic neurons drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow J Pharmacol Exp Ther 191, 82–91.

    PubMed  CAS  Google Scholar 

  • Warsh J J and Stancer H C (1976) Brain and peripheral metabolism of 5-hydroxytryptophan-14C following peripheral decarboxylase inhibition J Pharmacol Exp Ther 197, 545–555

    PubMed  CAS  Google Scholar 

  • Warsh J J, Chan P W, Godse D D, Coscina D V, and Stancer H C (1977) Gas chromatography-mass fragmentographic determination of indole-3-acetic acid in rat brain J Neurochem 29, 955–958

    PubMed  CAS  Google Scholar 

  • Warsh J J, Coscina D V, Godse D D, and Chan P W (1979) Dependence of brain tryptamine formation on tryptophan availability J Neurochem 32, 1191–1196

    PubMed  CAS  Google Scholar 

  • Warsh J J, Li P P, Godse D D, and Chueng S. (1981) Brain noradrenergic neuronal activity affects 3,4-dihydroxyphenyl-ethyleneglycol (DHPG) levels Life Sci 29, 1303–1307

    PubMed  CAS  Google Scholar 

  • Wecker L., Dettbarn W-D, and Schmidt D E (1978) Choline administration modification of the central actions of atropine. Science 199, 86–87.

    PubMed  CAS  Google Scholar 

  • Wecker L and Dettbarn W-D (1979) Relationship between choline availability and acetylcholine syntheses in discrete regions of rat brain J Neurochem 32, 961–967.

    Google Scholar 

  • Wecker L and Schmidt D E. (1979) Central cholinergic function relationship to choline administration Life Sci 25, 375–384.

    PubMed  CAS  Google Scholar 

  • Westenberg H G, Meijer L A, Vulto A G, and Versteeg D H G (1983) Simultaneous determination of dopamine, serotonin and their metabolites by liquid chromatography post-mortem changes 5th Catecholamine Symposium, Goteborg, Abstract 508

    Google Scholar 

  • Westerink B. H C and Korf J. (1976) Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain Eur J Pharmacol 37, 249–255

    PubMed  CAS  Google Scholar 

  • Westerink B H C and Spaan S. J (1982a) Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection. Implications for the sequence in the cerebral metabolism of dopamine J. Neurochem 38, 342–347

    PubMed  CAS  Google Scholar 

  • Westerink B H. C and Spaan S. J. (1982b) Simultaneous determination of the formation rate of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in various rat brain areas Brain Res 252, 239–245

    PubMed  CAS  Google Scholar 

  • Westerink B H C and Wirix E (1982) On the significance of tyrosine for the synthesis and catabolism of dopamine in rat brain evaluation by HPLC with electrochemical detectlon J Neurochem 40, 758–764

    Google Scholar 

  • Westerink B H C, Van Es T P and Spaan S J (1982) Effects of drugs interfering with dopamine and noradrenaline biosynthesis on the endogenous 3,4-dihydroxyphenylalanine levels in rat brain J Neurochem 39, 44–51

    PubMed  CAS  Google Scholar 

  • Westerink B H C, Bosker F and Wirix E (1984) Formation and metabolism of dopamine in nine areas of the rat brain modifications by haloperidol J Neurochem 42, 1321–1327

    PubMed  CAS  Google Scholar 

  • Widerlov E and Lewander T. (1978) Inhibition of the in vivo biosynthesis and changes of catecholamine levels in rat brain after alpha-methyl-p-tyrosine time and dose-response relationships Naunyn Schmiedeberg’s Arch Pharmacol 304, 111–123

    CAS  Google Scholar 

  • Wu P H, and Boulton A A (1973) Distribution and metabolism of tryptamine in rat brain Can J Biochem 51, 1104–1112

    PubMed  CAS  Google Scholar 

  • Wurtman R. J, Hefti F, and Melamed E (1981) Precursor control of neurotransmitter synthesis Pharmacol Rev 32, 315–335.

    Google Scholar 

  • Wurtman R. J, Larin F, Mostafapour S, and Fernstrom J D (1974) Brain catechol synthesis control by brain tyrosine concentration Science 185, 183–184

    PubMed  CAS  Google Scholar 

  • Young S N, Anderson, G. M, and Purdy W C (1980) Indoleamine metabolism in rat brain studied through measurements of tryptophan, 5-hydroxyindoleacetic acid, and indoleacetic acid in cerebrospinal fluid J Neurochem 34, 309–315

    PubMed  CAS  Google Scholar 

  • Zilversmit D B., Entenman C, and Fishler M. C (1943) On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeling agents J Gen Physiol 26, 325–331

    PubMed  CAS  Google Scholar 

  • Zilversmit D B (1960) The design and analysis of isotope experiments Am J Med 29, 832–848

    PubMed  CAS  Google Scholar 

  • Zsilla G, Cheney D L, and Costa E (1976) Regional changes in the rate of turnover of acetylcholine in rat brain following diazepam or muscimol. Naunyn-Schmiedeberg’s Arch Pharmacol 294, 251–255

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Korf, J. (1985). Turnover Rate Assessments of Cerebral Neutrotransmitter Amines and Acetylcholine. In: Boulton, A.A., Baker, G.B., Baker, J.M. (eds) Amines and Their Metabolites. Neuromethods, vol 2. Humana Press. https://doi.org/10.1385/0-89603-076-8:407

Download citation

  • DOI: https://doi.org/10.1385/0-89603-076-8:407

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-076-3

  • Online ISBN: 978-1-59259-607-2

  • eBook Packages: Springer Protocols