Skip to main content

Axonal Transport Methods and Applications

  • Protocol
General Neurochemical Techniques

Part of the book series: Neuromethods ((NM,volume 1))

Abstract

The processes of axonal transport are in most respects identical to intracellular transport in other metazoan cells. The shapes and sizes of neurons do require that intracellular transport be amplified to an unusual degree in both the amount of material moved and the distance traveled, but the underlying molecular mechanisms appear to be shared (Brady, 1984; Grafstein and Forman, 1980; Heslop, 1975; Lubinska, 1975; Schliwa, 1984; Weiss, 1982). When considered in the context of studies of the nervous system, however, it will become apparent that experiments involving axonal transport can provide a unique window into many aspects of neurobiology. Studies of axonal transport and related phenomena can produce insights into the cellular and molecular organization of neurons, the patterns of neuronal connectivity, and the dynamics of the nervous system. Sometimes these insights will come directly from studying axonal transport itself and, in other experiments, axonal transport processes are used as a tool for labeling or experimentally manipulating a group of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T., Haga T., and Kurokawa M (1973) Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem. J. 136, 731–740.

    CAS  PubMed  Google Scholar 

  • Adams R. J. (1982) Organelle movement in axons depends on ATP. Nature (Lond.) 297, 327–329.

    Article  CAS  Google Scholar 

  • Adams R, Baker P., and Bray D (1982) Particle movement in crustacean axons that have been rendered permeable by exposure to brief intense electric fields J Physiol (Lond.) 326, 7P

    Google Scholar 

  • Allen R. D and Allen N S (1983) Video-enhanced microscopy with a computer frame memory J Microsc. 129, 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Allen R D, David G B., and Nomarski G (1969) The Zeiss-Nomarksi differential interference equipment for transmitted light microscopy,Z wissen Mikr. Mikrotech 69, 193–221.

    CAS  Google Scholar 

  • Allen R. D, Travis J. L., Allen N S., and Yilmaz H. (1981a) Video-enhanced contrast polarization (AVEC-POL) microscopy. A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris Cell Motil 1, 275–289.

    Article  CAS  Google Scholar 

  • Allen R. D., Allen N. S, and Travis J. L (1981b) Video-enhanced contrast,differential interference contrast (AVC-DIC) microscopy.A new method capable of analyzing microtubule-related movement in the reliculopodial network of Allogromia laticollaris Cell Motil. 1,291–302.

    Article  CAS  Google Scholar 

  • Allen R. D, Metuzals J, Tasaki I, Brady S T., and Gilbert S. (1982) Fast axonal transport in squid giant axon Science 218, 1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Ambron R. T and Schwartz J H (1979) Regional Aspects of Neuronal Glycoprotein and Glycolipid Synthesis, in Complex Carbohydrates of Nervous Tissue (Margolis R and Margolis R., eds), pp 269–289, Plenum, New York

    Chapter  Google Scholar 

  • Ambron R T. and Treistman S N (1977) Glycoproteins are modified in the axon of R2, the iant neuron of Aplysia californica, after intraaxonal injection of [3H]-N-acetylgalactosamine. Brain Res 121, 287–309

    Article  CAS  PubMed  Google Scholar 

  • Baitmger C., Cheney R, Clements D., Glicksman M., Hirokawa N., Levine J, Meiri K., Simon C., Skene P., and Willard M. (1984) Axonally transported proteins in axon development, maintenance, and regeneration Cold Sprig Harbor Symp. 48, 791–802

    Article  Google Scholar 

  • Baitmger C, Levine J., Lorenz T., Simon C, Skene P, and Willard M (1982) Characteristics of Axonally Transported Proteins, in Axonplasmic Transport (Weiss D G., ed ), pp 110–120, Springer-Verlag, Berlin.

    Google Scholar 

  • Barondes S (1968) Incorporation of radioactive glucosamme into macromolecules at nerve endings. J. Neurochem. 15, 699–706.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett W. and Banker G (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. Cells which develop without intercellular contacts. J Neurosci. 4, 1944–1953

    CAS  PubMed  Google Scholar 

  • Bear R., Schmitt F., and Young J. Z. (1937) Investigations on the protein constituents of nerve axoplasm. Proc. Roy Soc Lond (B) 123, 520–529

    Article  CAS  Google Scholar 

  • Benowitz L. (1984) Target-Dependent and Target-Independent Changes in Rapid Axonal Transport During Regeneration of the Goldfish Retinotectal Pathway, in Axonal Transport in Neuronal Growth and Regeneration (Elam J. and Cancalon P, eds ), pp. 145–170, Plenum, New York

    Chapter  Google Scholar 

  • Berlinrood M, McGee-Russel S, and Allen R D (1972) Pattern of particle movements in nerve fibers in vitro An analysis by photokymography and microscopy J Cell Sci 11, 875–886

    CAS  PubMed  Google Scholar 

  • Bisby M A (1977) Retrograde axonal transport of endogenous protein Differences between motor and sensory axons J Neurochem 28, 249–251

    Article  CAS  PubMed  Google Scholar 

  • Bisby M A (1982) Ligature Techniques, in Axoplasmic Transport (Weiss D. G., ed ), pp. 437–441, Springer-Verlag, Berlin

    Google Scholar 

  • Bisby M A and Bulger V T (1977) Reversal of axonal transport at a nerve crush J Neurochem 29, 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Black M M. and Lasek R J (1977) The presence of transfer RNA in the axoplasm of the squid giant axon J Neurobiol 8, 229–237

    Article  CAS  PubMed  Google Scholar 

  • Black M M. and Lasek R J (1979a) Axonal transport of actin Slow component b is the principal source of actin for the axon. Brain Res 171, 401–413.

    Article  CAS  PubMed  Google Scholar 

  • Black M M and Lasek R. J (1979b) A difference between the proteins conveyed in the fast component of axonal transport in guinea pig hypoglossal and vagus motor neurons J Neurobiol 9, 433–443

    Article  Google Scholar 

  • Black M M. and Lasek R. J. (1980) Slow components of axonal transport Two cytoskeletal networks J, Cell Biol 86, 616–623

    Article  CAS  Google Scholar 

  • Blaker W D, Toews A D., and Morell P (1980) Cholesterol is a component of the rapid phase of axonal transport J Neurobiol 11,243–250

    Article  CAS  PubMed  Google Scholar 

  • Bloom G, Schoenfeld T, and Vallee R (1984) Widespread distribution of MAP1 (microtubule-associated protein 1) in the nervous system J Cell Biol. 98, 320–330

    Article  CAS  PubMed  Google Scholar 

  • Bonner W. M and Laskey R A (1974) A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels Eur. J Blochem 46, 83–88

    Article  CAS  Google Scholar 

  • Brady S T (1984) Basic Properties of Fast Axonal Transport and the Role of Fast Transport in Axonal Growth, in Axonal Transport in Neuronal Growth and Regeneration (Elam J and Cancalon P., eds ), pp 13–29, Plenum, New York.

    Chapter  Google Scholar 

  • Brady S T and Lasek R J (1981) Nerve specific enolase and creatine phosphokinase in axonal transport Soluble proteins and the axoplasmic matrix Cell 23, 523–351

    Article  Google Scholar 

  • Brady S T and Lasek R. J. (1982a) Axonal transport A cell biological method for studying proteins that associate with the cytoskeleton Meth. Cell Biol 25, 366–398.

    Google Scholar 

  • Brady S. T. and Lasek R. J (1982b) The Slow Components of Axonal Transport. Movements, Compositions, and Organization, in Axoplasmic Transport (Weiss D. G., ed ), pp. 206–217, Springer-Verlag, Berlin

    Google Scholar 

  • Brady S. T., Corthers S., Nosal C., and McClure W O (1980) Fast axonal transport in the presence of high Ca2+. Evidence that microtubules are not required Proc Nutl. Acad Sci USA 77, 5909–5913.

    Article  CAS  Google Scholar 

  • Brady S. T., Lasek R J., and Allen R. D (1982) Fast axonal transport in extruded axoplasm from squid grant axon Science 218, 1129–1131

    Article  CAS  PubMed  Google Scholar 

  • Brady S. T., Lasek R J, and Allen R. D (1985) Video microscopy of fast axonal transport in extruded axoplasm. A new model for study of molecular mechansrms Cell Motil. 5, 81–101

    Article  CAS  PubMed  Google Scholar 

  • Brady S T., Tytell M., Heriot K, and Lasek R J. (1981) Axonal transport of calmodulin. A physiologic approach to identification of long term associations between proteins J. Cell Biol 89, 607–614

    Article  CAS  PubMed  Google Scholar 

  • Branton D., Cohen C., and Tyler J. (1981) Interaction of cytoskeletal proteins on human erythrocyte membrane. Cell 24, 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Bray D. (1984) Axonal growth in response to experimentally applied mechanical tension Dev Biol 102, 379–389

    Article  CAS  PubMed  Google Scholar 

  • Bray J. and Austin L. (1968) Flow of protein and ribonucleic acid in peripheral nerve J Neurochem 15, 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Bray D. and Bunge M (1981) Serial analysis of microtubules in cultured rat sensory axons J Neurocytol 10, 589–605

    Article  CAS  PubMed  Google Scholar 

  • Breuer A. C, Christian C M., Henkart M., and Nelson P G (1975) Computer analyses of organelle translocation in primary neuronal cultures and continuous cell lines J Cell Biol. 65, 562–576.

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S. (1975) Stopflow. A new technique for measuring axonal transport and its application to the transport of dopamine-β-hydroxylase J Neurobiol 6, 379–394

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S., (1979a) Axonal transport and subcellular distribution of molecular forms of acetylcholinesterase in rabbit sciatic nerve Mol. Pharmacol 15, 641–648.

    CAS  PubMed  Google Scholar 

  • Brimijoin S, (1979b) On the kinetics and maximal capacity of the system for rapid axonal transport in mammalian neurones. J Physiol (Lond.) 292, 325–337.

    CAS  Google Scholar 

  • Brimijoin S and Dyck P F (1979) Axonal transport of dopamme-β-hydroxylase and acetylcholinesterase in human peripheral neuropathy. Exp Neurol 66, 467–478

    Article  CAS  PubMed  Google Scholar 

  • Brimrjoin S and Wiermaa M. J (1977a) Rapid axonal transport of tyrosine hydroxylase in rabbit sciatic nerves. Brain Res 121, 77–96

    Article  Google Scholar 

  • Brimijoin S. and Wiermaa M. J (1977b) Direct comparison of the rapid axonal transport of norepinephrine and dopamme-β-hydroxylase actrvlty. J Neurobiol. 8, 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Brimrjoin S. and Wrermaa M. J (1978) Rapid orthograde and retrograde axonal transport of acetylcholinesterase as characgerized by the stop-flow technique J Physiol (Lond ) 285, 129–142.

    Google Scholar 

  • Brimijoin S., Lundberg J. M., Brodin E., Hokfelt T., and Nilsson G (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig Brain Res 191, 443–457

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S., Capek P., and Dyck P J (1973) Axonal transport of dopamine-β-hydroxylase by human sural nerves in vitro Science 180, 1295–1297

    Article  CAS  PubMed  Google Scholar 

  • Broadwell R, Olver C, and Brightman M. (1980) Neuronal transport of acid hydrolases and peroxidases within the lysosmal system of organelles Involvement of agranular reticulum-like cisterns. J Comp. Neural. 190, 519–532.

    Article  CAS  Google Scholar 

  • Bulger V. T and Bisby M A (1978) Reversal of axonal transport in regenerating nerves J. Neurochem. 331, 1411–1418.

    Article  Google Scholar 

  • Bunt A. H and Haschke R. H. (1978) Features of foreign proteins affecting their retrograde transport in axons of the visual system, J. Neurocytol 7, 665–678

    Article  CAS  PubMed  Google Scholar 

  • Bunt A. H., Haschke R H, Lund R D, and Calkins D. F (1976) Factors affecting retrograde axonal transport of horseradrsh peroxidase in the visual system Brain Res 102. 152–155

    Article  CAS  PubMed  Google Scholar 

  • Courad J. Y. and DiGiamberardino L: (1980) Axonal transport of the molecular forms of acetylcholmesterase in chick sciatic nerve. J, Neurochem. 35, 1053–1066.

    Article  Google Scholar 

  • Cowan W. M. and Cuenod M, eds. (1975) The Use of Axonal Transport for studies of Neuronal Connectivity. Elsevier, New York.

    Google Scholar 

  • Cowan W. M, Gottlieb D I., Hendrickson A. E, Price J L., and Woolsey T. A. (1972) The autoradiographic demonstration of axonal connections in the central nervous system Brain Res 37, 21–51

    Article  CAS  PubMed  Google Scholar 

  • Csanyl V., Gervai J., and Lajtha A. (1973) Axoplasmic transport of free amino acids. Brain Res 56, 271–284

    Article  Google Scholar 

  • Cuenod M., Bagnoli P, Beaudet A., Rustioni A., Wiklund L, and Streit P. (1982) Retrograde Migration of Transmitter Related Molecules, in Axoplasmic Transport in Physiology and Pathology (Weiss, D and Gono A, eds ), pp. 160–166, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Currie J. R., Grafstein B, Whitnall M. H, and Alpert R (1978) Axonal transport of lipid in goldfish optic axons Neurochem Res 3, 479–492

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrom A. (1967) The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerve of rat and cat. Acta Physiol Scand 69, 158–166

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrom A. and Haggendal J (1966) Studies on the transport and lifespan of amine storage granules in a peripheral adrenergic neuron system Acta Phsiol Stand 67, 278–288.

    Article  CAS  Google Scholar 

  • Dahlstrom A and Heiwall P-O. (1975) Intra-axonal transport of transmitters in mammalian neurons J Neural Transm. Suppl 12, 97–114

    CAS  Google Scholar 

  • de Olmos J S, Ebbesson S, and Heimer L (1981) Silver Methods for the Impregnation of Degenerating Axoplasm, in Neuroanatomical Tract-tracing Methods (Heimer L and Robards M., eds ) pp. 117–170, Plenum, New York

    Chapter  Google Scholar 

  • de Mey J (1983a) A critical review of light and electron microscopic immunocytochemical techniques used in neurobiology J. Neurosci.Meth 7, 1–18.

    Article  Google Scholar 

  • de Mey J (1983b) Colloidal Gold Probes in Immunocytochemistry, in lmmunochemistry (Polak J and van Noorden S., eds ), pp. 82–112, Wright PSG, Bristol

    Google Scholar 

  • Droz B. and Leblond C P (1962) Migration of proteins along the axons of the sciatic nerve Science 137, 1047–1048

    Article  CAS  PubMed  Google Scholar 

  • Edstrom A and Hanson M (1973) Retrograde axonal transport of proteins in vitro in frog sciatic nerve. Brain Res. 61, 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Edstrom A and Mattson H (1972) Fast axonal transport in vitro in the sciatic system of the frog J Neurochem 19, 205–221.

    Article  CAS  PubMed  Google Scholar 

  • Elam J. S (1979) Axonal Transport of Complex Carbohydrates, in Complex Carbohydrates of Nervous Tissue. (Margolis R and Margolis R, eds ) pp 235–268, Plenum, New York

    Chapter  Google Scholar 

  • Elam J S. and Agranoff B. (1971) Rapid transport of protein in the optic system of the goldfish J Neurochem 18, 3735–387

    Article  Google Scholar 

  • Elam J S. and Cancalon P, eds. (1984) Axonal Transport in Neuronal Growth and regeneration Plenum, New York.

    Google Scholar 

  • Elam J. S. and Peterson N W (1976) Axonal transport of sulfated glycoproteins and mucopolysaccharides in the garfish olfactory nerve J, Neurochem 26, 845–850

    Article  CAS  Google Scholar 

  • Elam J. S., Goldberg J, Radin N S, and Agranoff B. W (1970) Rapid axonal transport of sulfated mucopolysaccharide proteins. Science 170, 458–460

    Article  CAS  PubMed  Google Scholar 

  • Erickson P. F, Seamon K B, Moore B W, Lasher R S., and Miner L N (1980) Axonal transport of the Ca2+ dependent protein modulator of 3′.5′ cyclic AMP phophodiesterase in the rabbit visual system. J. Neurochem. 35, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Estridge M and Bunge R. (1978) Compositional analysis of growing axons from rat sympathetic neurons J Cell Biol. 79, 138–155

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Brady S T, and Lasek R (1982) Axonal transport of membranous organelles in squid giant axons and axoplasm. J Cell Biol. 95, 330a.

    Google Scholar 

  • Feher E (1984) Electron microscopic study of retrograde axonal transport of horseradish peroxidase Int Rev CytoI 90, 1–30.

    Article  CAS  Google Scholar 

  • Fillenz M, Gagnon C, Stoeckel K, and Thoenen H. (1976) Selective uptake and retrograde axonal transport of dopamme-β-hydroxylase antibodies in peripheral adrenergic neurons Braim Res 114,293–303

    Article  CAS  Google Scholar 

  • Fink D J and Gamer H (1979) The use of a labeled acylating probe for the study of fast axonal transport Brain Res 177, 208–213

    Article  CAS  PubMed  Google Scholar 

  • Fink D. J and Gainer H (1980) Axonal transport of proteins A new view using in vivo covalent labeling J Cell Biol 85, 175–186

    Article  CAS  PubMed  Google Scholar 

  • Fonnum F, Frizell M., and Sjostrand J. (1973) Transport, turnover, and redistribution of choline acetyl transferase and acetylcholinesterase in the vagus and hypoglossal nerves of rabbit J Neurochem 21, 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  • Forman D. (1981) A permeabilized cell model of saltatory organelle movement J. Cell Biol. 91, 414a

    Article  Google Scholar 

  • Forman D S and Berenberg R A (1978) Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins Brain Res 156, 213–225

    Article  CAS  PubMed  Google Scholar 

  • Forman D S and Ledeen R W (1972) Axonal transport of gangliosides in the goldfish optic nerve Science 177, 630–633

    Article  CAS  PubMed  Google Scholar 

  • Forman D, Padjen A L, and Siggins G (1977) Axonal transport of organelles vrsualized by light microscopy Cinemicrographic and computer analysis. Brain Res 136, 197–213

    Article  CAS  PubMed  Google Scholar 

  • Forman D, Brown K, Promersberger M, and Adelman M, (1984) Nucleotide specificity for reactivation of organelle movements of fast axonal transport in permeabilized axons. Cell Motil 4, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Gainer H., Sarne Y, and Brownstein M J. (1977a) Brosynthesis and axonal transport of rat neurohypophysral proteins and peptides J Cell Biol 73, 366–381

    Article  CAS  PubMed  Google Scholar 

  • Gainer H, Sarne Y., and Brownstein M J. (1977b) Neurophysin biosynthesis. Conversron of a putative precursor during axonal transport Science 195, 1354–1356

    Article  CAS  PubMed  Google Scholar 

  • Gamse R., Lembeck F., and Cuello A C. (1979) Substance P in the vagus nerve. Immunochemical and immunohistochemical evidence for axoplasmic transport. Naunyn-Schmiedebergs Arch Pharmacol. 306,37–44.

    Article  CAS  PubMed  Google Scholar 

  • Garner J A. and Lasek R J. (1981) Clathrin is axonally transported as part of slow component b. The axoplasmic matrix. J Cell Biol. 88, 172–178

    Article  CAS  PubMed  Google Scholar 

  • Garner J. A. and Lasek R J. (1982) Cohesive axonal transport of the slow component b complex of polypeptides. J Neurosci 2, 1824–1835.

    CAS  PubMed  Google Scholar 

  • George E B and Lasek R J. (1983) Contraction of isolated neural processes: A model for studying cytoskeletal translocation in neurons J. Cell Biol 97, 267a.

    Google Scholar 

  • Gilbert D (1974) Physiological Uses of the Squid with Special Emphasis on the Use of the Giant Axon, in A Guide to the Laboratory Use of the Squid Lollgo Pealei, Marine Biological Laboratory Woods Hole, Massachusetts, pp 45–54.

    Google Scholar 

  • Gilbert S. and Sloboda R (1984) Bidirectional transport of fluorescently labeled vesicles introduced into extruded axoplasm of squid Loligo pealei. J Cell Biol 99, 445–452

    Article  CAS  Google Scholar 

  • Giuditta A, Ciysello A, and Lazzarini G(1980) Ribosomal RNA in the axoplasm of the squid giant axon. J Neurochem. 34, 1757–1760

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A., Hunt T, and Scanella L. (1983) Messenger RNA in squid axoplasm Biol. Bull 165, 526

    Google Scholar 

  • Goldberg D J., Goldman J E, and Schwartz J H. (1976) Alterations in amounts and rates of serotonin transported in an axon of the giant cerebral neurone of Aplysia californica J Physlol 259, 473–490

    CAS  Google Scholar 

  • Gonatas N. K, Harper C, Mizutam T., and Gonatas J O. (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J. Histochem Cytochem 27, 728–734.

    Article  CAS  PubMed  Google Scholar 

  • Gould R M, Spivack W., Sinatra R, Lindquist T., and Ingoglia N. (1982) Axonal transport of choline lipids in normal and regenerating rat sciatic nerve. J Neurochem 39, 1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Gould R. M, Pant H., Gamer H, and Tytell M. (1983a) Phospholipid synthesis in the squid giant axon: Incorporation of lipid precursors J Neurochem 40, 1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Gould R M., Spivack W., Robertson D., and Poznansky M. (1983b) Phospholipid synthesis in the squid giant axon, Enzymes of phosphatidylinositol metabolism. J Neurochem 40, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  • Grafstein B (1967) Transport of protein by goldfish optic nerve fibers Science 157, 196–198

    Article  CAS  PubMed  Google Scholar 

  • Grafstein B. and Forman D (1980) Intracellular transport in neurons. Physiol Rev 60, 1167–1283

    CAS  PubMed  Google Scholar 

  • Grafstein B and McQuarrie I G. (1978) The Role of the Nerve Cell Body in Axonal Regeneration, in Neuronal Plasticity (Cotman C, ed ), pp 155–195, Raven, New York.

    Google Scholar 

  • Grafstein B., Miller J. A, Ledeen R. W., Haley J., and Specht S. C. (1975) Axonal transport of phospholipid in goldfish optic system Exp Neurol 46, 261–281.

    Article  CAS  PubMed  Google Scholar 

  • Griffin J, W, Price D L., Drachman D B., and Morris J R. (1981) Incorporatio of transported glycoproteins into axolemma during regeneration. J. Cell Biol 88, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Gross G W and Beidler L M (1975) Fast axonal transport in the C-fibers of goldfish olfactory nerve. J Neuroblol 4, 413–428

    Article  Google Scholar 

  • Gulya K. and Kasa P. (1984) Transport of muscarinic cholinergic receptors in the sciatic nerve of rat Neurochem Int 6, 123–126

    Article  CAS  PubMed  Google Scholar 

  • Gunning P. W., Por S, Langford C., Scheffer J, Austin L, and Jeffrey P. (1979) The direct measurement of the axoplasmic transport of individual RNA species. Transfer but not ribosomal RNA is transported. J Neurochem 32, 1737–1743.

    Article  CAS  PubMed  Google Scholar 

  • Hadley R. T and Trachtenberg M C. (1978) Poly-L-ornithine enhances the uptake of horseradish peroxidase. Brain Res 158, 1–14

    Article  CAS  PubMed  Google Scholar 

  • Haggendal J. (1980) Axonal transport of dopamme-β-hydroxylase to rat salivary glands Studies on enzymatic activity J. Neural Transm 47, 163–174

    Article  CAS  PubMed  Google Scholar 

  • Hahnenberger R W (1978) Effects of pressure on fast axoplasmic flow An in vitro study in the vagus nerve of rabbits Acta Physiol Scand 104, 299–308

    Article  CAS  PubMed  Google Scholar 

  • Haley J. E, Tirri L J., and Ledeen R W (1979) Axonal transport of lipids in the rabbit optic system J Neurochem 32, 727–734

    Article  CAS  PubMed  Google Scholar 

  • Hall M E (1982) Changes in the synthesis of specific proteins in axotomized dorsal root ganglia Exp Neurol 76, 83–93

    Article  CAS  PubMed  Google Scholar 

  • Hammerschlag R. and Stone (1982) Membrane delivery by fast axonal transport. Trends Neurosci 5, 12–15

    Article  Google Scholar 

  • Hammerschlag R (1983) How do neuronal proteins know where they are going?... Speculations on the role of molecular address markers. Dev Neurosci. 6, 2–17

    Article  PubMed  Google Scholar 

  • Hammerschlag R. and Stone (1982) Membrane delivery by fast the transport system Neuroscience. 4, 1195–1201.

    Article  Google Scholar 

  • Hammerschlag R and Lavoie P A (1979) Inmation of fast axonal transport: Involvement of calcium during transfer of proteins from Golgi apparatus to the transport system Neurosctence 4, 1195–1201.

    Article  CAS  Google Scholar 

  • Hammerschlag R, Bakhit C, and Chiu A Y. (1977) Role of calcium in the initation of fast axonal transport Effects of divalent cations J Neurobiol 8, 439–451

    Article  CAS  PubMed  Google Scholar 

  • Hammerschlag R, Dravid A. R., and Chiu A. Y (1975) Mechanism of axonal transport A proposed role for calcium ions Science 188, 273–275

    Article  CAS  PubMed  Google Scholar 

  • Hammerschlag R., Stone G C, Bolen F., Lmdsey J, and Ellisman M (1982) Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus. J Cell Biol 93, 568–575

    Article  CAS  PubMed  Google Scholar 

  • Hanson M. (1978) A new method to study fast axonal transport in vivo Brain Res 153, 121–126

    Article  CAS  PubMed  Google Scholar 

  • Hanson M. and Bergqvist J E (1982) In Vitro Chamber Systems to Study Axonal Transport, in Axoplasmic Transport (Weiss D. G, ed.), pp. 429436, Springer-Verlag, Berlin

    Google Scholar 

  • Hanson M. and Edstrom A. (1978) Mitosis inhibitors and axonal transport.Int Rev Cytol (Suppl) 7, 373–402

    Google Scholar 

  • Hansson H.-A. (1973) Uptake and bidirectional transport of horseradish peroxidase in retinal ganglion cells. Exp. Eye Res 16, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Harper C, Gonatas J O., Steiber A., and Gonatas N. K. (1980) In vivo uptake of wheat germ agglutinin-horseradish peroxrdase conjugates into neruonal GERL and lysosomes. Braim Res. 188, 465–472.

    Article  CAS  Google Scholar 

  • Harrison R. G (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movement J Exp Zool. 9, 787–848

    Article  Google Scholar 

  • Heacock A. and Agranoff B. (1977) Reutilization of precursor following axonal transport of [3H]-proline labeled protein. Brain Res 122, 243–254

    Article  CAS  PubMed  Google Scholar 

  • Hemmer L and Robards M, eds. (1981) Neuroanatomical Tract-Tracing Methods Plenum, New York

    Google Scholar 

  • Heiwall P.-O., Dahlstrom A, Larsson P, and Booj S (1979) The intraaxonal transport of acetylcholine and cholinergic enzymes after various types of axonal trauma J Neurobiol 10, 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Heslop J. P (1975) Axonal flow and fast transport in nerves. Adv Comp Physiol Biochem 6, 75–163

    Article  CAS  PubMed  Google Scholar 

  • Hoffman P N and Lasek R J. (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: Constancy and change. Brain Res 202, 317–333

    Article  CAS  PubMed  Google Scholar 

  • Hoffman P. N. and Lasek R J (1975) The slow component of axonal transport Identification of major structural polypeptides of the axon and their generality among mammalian neurons J. Cell Biol. 66, 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman P., Griffin J, and Price D. (1984) Neurofilament Transport in Axonal Regeneration Implications for the Control of Axonal Caliber, in Neuronal Growth and Regeneration (Elam J. and Cancalon P, eds ), pp. 243–260, Plenum, New York.

    Chapter  Google Scholar 

  • Ingoglia N. A (1979) 4S RNA is present in regenerating optic axons of goldfish. Science 206, 73–75.

    Article  CAS  PubMed  Google Scholar 

  • Ingoglra N. A and Tuliszewski R (1976) Transfer RNA may be axonally transported during regeneration of goldfish optic nerves. Brain Res. 112, 371–381

    Article  Google Scholar 

  • Ingogha N. A, Grafstein B., McEwen B, and McQuarrie I (1973) Axonal transport of radioactivity in the goldfish optic system following intraocular injection of labelled RNA precursors. J Neurochem. 20, 1605–1615

    Article  Google Scholar 

  • Ingoglia N A., Weis P., and Mycek J. (1975) Axonal transport of RNA during regeneration of the optic nerve of goldfish. J Neurobiol 6, 439–563

    Article  Google Scholar 

  • Inoue S (1981) Video image processmg greatly enhances contrast, quality, and speed in polarization-based microscopy J Cell Biol 89, 346–356

    Article  CAS  PubMed  Google Scholar 

  • isenberg G., Schubert P, and Kreutzberg G (1980) Experimental approach to test the role of actin in axonal transport. Brain Res 194, 588–593.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L., Walsh M, and Chen L. (1980) Localization of mitochondria in living cells with rhodamine 123 Proc NutI. Acad Sci USA 77, 990–994.

    Article  CAS  Google Scholar 

  • Jones E G, and Hartman B K (1978) Recent advances in neuroanatomical methodology. Ann. Rev. Neurosci 1, 215–296.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J,-0 and Linde A (1977) Axonal transport of 35S in retinal ganglion cells of the rabbit. J Neurochem. 28, 293–297.

    Article  CAS  Google Scholar 

  • Karlsson J.-0 and Sjostrand J (1971a) Transport of microtubule protein in axons of retinal ganglion cells. J Neurochem 18, 975–982

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J-0. and Sjostrand J (1971b) Rapid intracellular transport of fucose-containing glycoproteins in retinal ganglion cells J Neurochem 18, 2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J.-0 and Sjostrand J (1971c) Characterization of the fast and slow components of axonal transport in retinal ganglion cells J Neurobiol 2, 135–143.

    Article  Google Scholar 

  • Kasa P. (1968) Acetylcholmesterase transport in the central and peripheral nervous tissue. The role of tubules in the enzyme transport Nature (Lond ) 218, 1265–1267

    Article  CAS  Google Scholar 

  • Kasa P. Mann S., Karcsu S., Toth L, and Jordan S (1973) Transport of choline acetyltransferase and acetylcholinesterase in the rat sciatic nerve. A biochemical and electron histochemical study. J Neurochem 21, 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Katz L. C., Burkhalter A, and Dreyer W J (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature (Lond.) 310, 498–500

    Article  CAS  Google Scholar 

  • Katz M., Lasek R, Osdoby P, Whittaker J., and Caplan A. (1982) Bolton-Hunter reagent as a vital stain for developing systems Dev. Biol 90, 419–429.

    Article  CAS  PubMed  Google Scholar 

  • Keith C and Shelanski M. (1982) Direct Visualization of Fluorescently Labeled Microtubules in Living Cells, In Biological Functions of MicrotubuIes and Related Structures (sakai H, Mohri H, and Borisy G., eds.), pp 365–376, Academic, New York.

    Google Scholar 

  • Kirkpatrick J., Bray J., and Palmer S (1972) Visualization of axoplasmic flow in vitro by Nomarski microscopy Comparison to rapid flow of radioactive proteins Brain Res. 43, 1–10

    Article  CAS  PubMed  Google Scholar 

  • Koenig E (1979) Ribosomal RNA in Mauthner axon Implications for a protein synthesizing machinery in the myelinated axon Braln Res. 174, 95–107

    Article  CAS  Google Scholar 

  • Koenig E. and Adams P (1982) Local protein synthesizing activity in axonal fields regenerating In vitro. J Neurochem 39, 386–400.

    Article  CAS  PubMed  Google Scholar 

  • Koenig E and Koelle G B (1961) Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation. J Neurochem 8, 169–188

    Article  CAS  PubMed  Google Scholar 

  • Korke H., Eisenstadt M., and Schwartz J (1972) Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia Brain Res 37, 152–159.

    Article  Google Scholar 

  • Komiya Y. (1980) Slowing with age of the rate of slow axonal flow in bifurcating axons of rat dorsal root ganglion cells Brain Res 183, 477–480

    Article  CAS  PubMed  Google Scholar 

  • Komiya Y., and Kurokawa M (1978) Asymmetry of protein transport in two branches of bifurcating axons. Brain Res. 139, 354–358.

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg G. W., Schubert P., Toth L, and Rieske E (1973) Intradendritic transport to postsynaptrc sites. Brain Res. 62, 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K (1970a) Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta Neuropathol 16, 54–63

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K (1970b) Transport of fluorescent protein tracer in peripheral nerve. Acta Neuropathol. 16, 293–300

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K. (1978) Retrograde transport of macromolecules in axons. Ann Rev. Pharmacol. Toxicol 18, 97–110.

    Article  CAS  Google Scholar 

  • Kristensson K and Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29, 363–365.

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K. and Olsson Y (1974) Retrograde transport of horseradish peroxidase in transsected axons 1 Time relatronships between transport and induction of chromatolysis. Brain Res 79, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Kuhar M. and Zarbin M A (1984) Axonal transport of muscarinic cholinergic receptors and its implications Trends Pharmacol Sci 5, 53–56

    Article  Google Scholar 

  • Laduron P M. (1984) Axonal transport of receptors Coexistance with neurotransmitter and recyclmg. Biochem. Pharmacol 33, 897–903

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond ) 227, 680–685

    Article  CAS  Google Scholar 

  • Lasek R. J. (1966) Axoplasmic streaming in the cat dorsal root ganglion cell and the rat ventral motoneuron. Anat Rec. 154, 373–374.

    Google Scholar 

  • Lasek R J (1967) Bidirectional transport of radioactively labeled axoplasmic components Nature (Lond ) 216, 1212–1214.

    Article  CAS  Google Scholar 

  • Lasek R J. (1968) Axoplasmic transport in cat dorsal root ganglion cells As studied with [3H]-L-leucine Brain Res 7, 360–377.

    Article  CAS  PubMed  Google Scholar 

  • Lasek R J. (1974) Biochemistry of the Squid Giant Axon, in A Guide to the Laboratory Use of the Squid Lollgo pealei Marine Biological Laboratory Woods Hole, Massachusetts

    Google Scholar 

  • Lasek R J. (1980) A dynamic view of neuronal structure Trends Neurosci. 3, 87–91.

    Article  Google Scholar 

  • Lasek R J, (1981) The dynamic ordering of neuronal cytoskeletons. Neurosci. Res Prog Bull 19, 7–32

    CAS  Google Scholar 

  • Lasek R. J. (1982) Translocation of the neuronal cytoskeleton and axonal locomotion Philoos Trans Roy Soc. Lond (B) 299, 313–327

    Article  CAS  Google Scholar 

  • Lasek R J (1984) The structure of axoplasm. Curr Top Memb Trans 22, 39–53.

    Article  Google Scholar 

  • Lasek R J and Black M M (1977) How do Axons Grow? Some Clues from the Metabolism of the Proteins in Slow Component of Axonal Transport, in Mechanisms, Regulation, and Special Functions of Protetn Synthesis in the Brain (Roberts E., ed.), pp. 161–169, Elsevler, Amsterdam

    Google Scholar 

  • Lasek R. J. and Brady S T (1982) The axon. A prototype for studying expressronal cytoplasm Cold Spring Harbor Symp. Quant Biol. 46, 113–124

    Article  PubMed  Google Scholar 

  • Lasek R. J and Brady S T (1982b) The Structural Hypothesis of Axonal Transport. Two Classes of Moving Elements, in Axoplasmic Transport (Weiss D. G., ed ) pp 397–405, Springer-Verlag, Berlin.

    Google Scholar 

  • Lasek R. J, and Hoffman P (1976) The Neuronal Cytoskeleton, Axonal Transport, and Axonal Growth, in Cell Motility (Goldman R., Pollard T, and Rosenbaum J, eds ) Cold Spring Harbor Conf Cell Prolif 3, 1021–1049.

    Google Scholar 

  • Lasek R. J, Joseph B., and Whitlock D (1968) Evaluation of a radioautographic neuroanatomical tracing method Brain Res 8, 319–336

    Article  CAS  PubMed  Google Scholar 

  • Lasek R. J, Dabrowski C., and Nordlander R (1973) Analysis of axoplasmic RNA from invertebrate giant axons. Nature New Biol 244, 162–165

    Article  CAS  PubMed  Google Scholar 

  • Lasek R J, Gainer H., and Barker J (1977) Cell to cell transfer of glial proteins to the squid giant axon. The glial-neuron protein transfer hypothesis J Cell Biol 74, 501–523

    Article  CAS  PubMed  Google Scholar 

  • Lasek R J, Gainer H, and Przybylski, R (1974) Transfer of newly synthesized proteins from Schwann cells to the squid giant axon Proc Nut1 Acad Sci USA 71, 1188–1192

    Article  CAS  Google Scholar 

  • Lasek R J, Garner J., and Brady S T (1984a) Axonal transport of the cytoplasmic matrix J Cell Biol. 99, 212s–22is.

    Article  CAS  PubMed  Google Scholar 

  • Lasek R. J, McQuarrie I, and Brady S. T (1984b) Transport of Cytoskeletal and Soluble Proteins in Neurons, in Biological Structures and Coupled Flows (Oplatka A. and Balaban M., eds ), pp 329–347, Academic, New York

    Google Scholar 

  • Lasek R J., McQuarrie I, and Wulek J. (1981) The Central Nervous System Regeneration Problem. Neuron and Environment, in Posttraumatic Peripheral Nerve Regeneration. Experimental Basis and Clinical Implications. (Gorio A., ed ), pp, 59–74, Raven, New York

    Google Scholar 

  • Lasek R. J., Oblinger M M, and Drake P. (1983) Molecular biology of neuronal geometry, Expression of neurofilament genes influences axonal diameter. Cold Spring Harbor Symp Quant Biol. 48, 731–744.

    Article  CAS  PubMed  Google Scholar 

  • Laskey R. and Mills A (1975) Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography Eur J Biochem 56, 335–341

    Article  CAS  PubMed  Google Scholar 

  • La Vail J H (1978) A Review of the Retrograde Transport Technique, in Neuroanatomical Research Techniques (Robertson R. T, ed.), pp 355–384 Academic, New York.

    Google Scholar 

  • La Vail J, H. and La Vail M M (1972) Retrograde axonal transport in the central nervous system Science 176, 1416–1417

    Article  Google Scholar 

  • La Vail J H and La Vail M M (1974) The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system A light and electron microscopic study. J Comp Neural 157,303–358.

    Article  Google Scholar 

  • La Vail J H, Rapisardi S., and Sugino I K (1980) Evidence against the smooth endoplasmic reticulum as a continuous channel for the retrograde axonal transport of horseradish peroxidase Brain Res 191,3–20

    Article  Google Scholar 

  • La Vail J. H, Sugino I. K, and McDonald D M (1983) Localization of axonally transported 125I-wheat germ agglutinin beneath the plasma membrane of chick retinal ganglion cells. J. Cell Biol 96, 373–381

    Article  Google Scholar 

  • Levine J. and Willard M. (1981) Fodrin. Axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol 90, 631–643.

    Article  CAS  PubMed  Google Scholar 

  • Longo F and Hammerschlag R. (1980) Relation of somal lipid synthesis to the fast axonal transport of protein and lipid. Brain Res. 193, 471–485.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz T and Willard M (1978) Subcellular fractionation of intraaxonally transported polypeptides in the rabbit visual system Proc. Nutl Acad. Sci. USA 75, 505–509

    Article  CAS  Google Scholar 

  • Lubinska L. (1964) Axoplasmic Streaming in Regenerating and in Normal Nerve Fibres, in Progress in Brain Research Mechanisms of Neural Regeneration (singer M. and Schade J., eds ), 13, 1–66, Elsevier, Amsterdam

    Google Scholar 

  • Lubinska L. (1975) On axoplasmic flow. Int Rev Neurobiol 17, 241–296

    Article  CAS  PubMed  Google Scholar 

  • Lubinska L., Niemierko S, Oderfield B., and Szwarc L. (1964) Behavior of acetylcholinesterase in isolated nerve segments J Neurochem. 11, 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Lubinska L, Niemierko S, Oderfield B, Szwarc L, and Zelena Z (1963) Bidirectional movements of axoplasm in peripheral nerve frbres. Acta Biol Exp 23, 239–247

    CAS  Google Scholar 

  • Margolis R. and Margolis R. (eds ) (1979) Complex Carbohydrates of Nervous Tissue Plenum, New York

    Google Scholar 

  • Margolis T P and La Vail J. H (1981) Rate of anterograde axonal transport of [125-I]wheat germ agglutinin from retina to optic tectum in the chick Brain Res. 229, 218–223

    Article  CAS  PubMed  Google Scholar 

  • Margolis T. P., Marchand C, Kistler H. B, and La Vail J H. (1981) Uptake and anterograde axonal transport of wheat germ agglutinin from retina to optic tectum in the chick. J. Cell Biol. 89, 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Matus A, Bernhardt R., and Hugh-Jones H. (1981) High molecular weight microtubule associated proteins are preferentially associated with dendritic microtubules in brain Proc Natl. Acad. Sci. USA 78, 3010–3014.

    Article  CAS  PubMed  Google Scholar 

  • McQuarrie I (1983) Role of the Axonal Cytoskeleton in the Regenerating Nervous System, in Nerve, Organ, and Tissue Regeneration: Research Perspectives (seil F, ed.), pp 51–88, Academic, New York.

    Chapter  Google Scholar 

  • McQuarrie I., Brady S, and Lasek R (1980) Polypeptide composition and kinetics of SCa and SCb in sciatic nerve motor axons and optic axons of rat. Soc Neurosci Abstr. 6, 501.

    Google Scholar 

  • Mesulam M. (ed.) (1982) Tracing Neural Connections with Horseradish Peroxidase. Wiley, New York

    Google Scholar 

  • Mesulam M. and Brushart T (1979) Transganglioinc and anterograde transport of horseradish peroxidase across dorsal root ganglia. A tetramethylbenzidine method for tracing central sensory connections of muscles and peripheral nerves Neuroscience 4, 1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M. and Mufson E (1980) The rapid anterograde transport of horseradish peroxidase Neuroscience 5, 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  • Miki-Noumura T and Kamiya R. (1979) Shape of microtubules in solutions. Exp. Cell Res. 97, 451–453

    Article  Google Scholar 

  • Morell P., Blaker W., and Goodrum J (1982) Axonal Transport of a Mitochondria Specific Lipid, in Axoplasmic Transport (Weiss D G, ed.), pp 175–180, Springer-Verlag, Berlin

    Google Scholar 

  • Nauta H. J, Kaiserman-Abrainof I, and Lasek R. J (1975) Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat. Possible involvement of the agranular reticulum Brain Res 85, 373–384

    Article  CAS  PubMed  Google Scholar 

  • Nauta H. J., Pritz M B, and Lasek R J (1974) Afferents to the rat caudoputamen studied with horseradish peroxidase An evaluation of a retrograde neuroanatomical research method Brain Res 67, 219–238

    Article  CAS  PubMed  Google Scholar 

  • Nixon R A, Brown B, and Marotta C (1982) Posttranslational modification of neurofilament protein during axoplasmic transport. Implications for regional specialization of CNS axons. J, Cell Biol. 94, 150–158

    Article  CAS  Google Scholar 

  • Oblinger M (1984) Slow axonal transport in a CNS motor pathway. The protein composition and kinetics of SCa and SCb in hamster corticospinal axons Soc Neurosci Abs 10, 1087

    Google Scholar 

  • Oblinger M and Lasek R. J (1984) A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. J Neurosci 4, 1736–1744.

    CAS  PubMed  Google Scholar 

  • Oblinger M., Brady S., and McQuarrie I (1982) Comparative compositional analysis of slowly transported axonal proteins in peripheral and central mammalian neurons. Soc Neurosci. Abstr 8, 826.

    Google Scholar 

  • Ochs S. (1972a) Fast transport of materials in mammalian nerve fibers Science 176, 252–260

    Article  CAS  PubMed  Google Scholar 

  • Ochs S. (1972b) Rate of fast axoplasmic transport in mammalian nerve fibers J Physiol (Lond.) 227, 627–645

    CAS  Google Scholar 

  • Ochs S. and Rainsh N. (1969) Characteristics of the fast transport system in mammalian nerve fibers J Neuvobiol 1, 247–261

    Article  CAS  Google Scholar 

  • Oeltmann T. N and Wiley R G (1984) Wheat germ agglutinin-ricin A-chain (WGA-SS-RTA) conjugate A new semisynthetic suicide transport agent Soc Neurosci Abstr 10, 352

    Google Scholar 

  • O′Farrell P (1975) High resolution two dimensional electrophoresis of protems J. Biol Chem. 250, 4007–4021

    PubMed  Google Scholar 

  • Partlow L, Ross C, Motwani R, and McDougal D. (1972) Transport of axonal enzymes in surviving segments of frog sciatic nerve J Gen Physiol 60, 388–405

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay S., and Webster H. (1976) The Fine Structure of the Nervous System Saunders, Philadelphia

    Google Scholar 

  • Quarles R H. and Brady R O (1971) Synthesis of glycoproteins and gangliosides in developing rat brain. J Neurochem. 18, 1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Reperant J, Miceli D, and Raffin J. (1977) Transneuronal transport of tritiated fucose and proline in the avian visual system Brain Res 121, 343–347.

    Article  CAS  Google Scholar 

  • Ruda M. A. and Coulter J. D. (1979) Lectins as markers of axoplasmic transport in the nervous system J Histochem Cytochem. 28, 607.

    Google Scholar 

  • Sasaki-Sherribngton S., Jacobs J, and Stevens J. (1984) Intracellular control of axial shape in nonuniform neurites: A serial electron microscopic analysis of organelles and microtubules in AI and AII retinal amacrine neurites J Cell Biol 98, 1279–1290

    Article  Google Scholar 

  • Schliwa M (1984) Mechanisms of intracellular organelle transport. Cell Must Mot 5, 1–82.

    Article  CAS  Google Scholar 

  • Schroer T. A. and Brady S T. (1984) Fast axonal transport (FAT) of fluorescently labelled elasmobranch synaptic vesicles in isolated axoplasm from squid giant axon. Biol Bull. 167, 504–505

    Google Scholar 

  • Schubert P and Hollander H. (1975) Methods of Delivery of Tracers to the Central Nervous System, in The Use of Axonal Transport for Studles of Neuronal Connectivity (Cowan W. M. and Cuenod M, eds.), pp 113–126, Elsevier, New York.

    Google Scholar 

  • Schwab M E. (1977) Ultrastructural localization of a nerve growth factor-horseradish peroxidase (NGF-HRP) coupling product after retrograde transport in adrenergic neurons. Brain Res 130, 190–196

    Article  CAS  PubMed  Google Scholar 

  • Schwab M E and Thoenen H (1978) Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris J Cell Biol 77, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Schwab M E, Javoy-Aged F, and Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system Brain Res 152, 145–150

    Article  CAS  PubMed  Google Scholar 

  • Schwab M E, Suda K, and Thoenen H (1979) Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82, 798–810

    Article  CAS  PubMed  Google Scholar 

  • Shaw G. and Bray D (1977) Movement and extension of isolated growth cones Exp Cell Res 104, 55–62

    Article  CAS  PubMed  Google Scholar 

  • Shield L, Griffin J, Drachman D., and Price D. (1977) Retrograde axonal transport A direct method for measurement of rate. Neurology 27, 393.

    Article  Google Scholar 

  • Skene P. and Willard M. (1981) Axonally transported proteins associated with growth in rabbit central and peripheral nervous systems J Cell Biol 89, 96–103

    Article  CAS  PubMed  Google Scholar 

  • Smith R S (1972) Detection of organelles in myelinated nerve fibers by dark field microscopy Can J Physiol. Pharmacol 50, 467–469

    Article  CAS  PubMed  Google Scholar 

  • Smith R S (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J. Neurocytol 9, 39–65.

    Article  CAS  PubMed  Google Scholar 

  • Smith R. S. and Kales Z J (1976) Mean velocity of optically detected intraaxonal particles measured by a cross correlation method. Can J. Physiol Pharmacol 54, 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Snyder R and Smith R S (1983) Physical methods for the study of the dynamics of axonal transport. CRC Cnt. Rev Biomed Eng 10,89–123.

    Google Scholar 

  • Specht S. (1983) Axonal transport of Na, K-ATPase in optic nerve of hamster.Curr Top Memb Res 19, 819–823.

    Article  CAS  Google Scholar 

  • Specht S and Grafstein B (1977) Axonal transport and transneuronal transfer in mouse visual system following injection of 3H fucose into the eye Exp Neurol 41, 705–722.

    Article  Google Scholar 

  • Specht S. C and Sweadner K J (1984) Two different NA,K-ATPases in the optic nerve Cells of origin and axonal transport Proc Nat. Acad Sci USA 81, 1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Spencer M (1982) Fundamentals of Light Microscopy Cambridge Univ Press, Cambridge.

    Google Scholar 

  • Sternberger L and Sternberger N (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ Proc. Nat1 Acad Sci USA 80, 6126–6130.

    Article  CAS  Google Scholar 

  • Steward 0. (1981) Horseradish Peroxidase and Fluorescent Substances and Their Combination With Other Techniques, in Neuroanatomical Tract-Tracing Methods (Hemmer L and Robards M., eds.), pp 279–310, Plenum, New York.

    Chapter  Google Scholar 

  • Steward O and Fass B. (1983) Polyribosomes associated with dendritic spines in the denervated dentate gyrus Evidence for local regulation of protein synthesis during reinnervation Prog Brain Res 58, 131–136

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel K. and Thoenen H (1975) Retrograde axonal transport of nerve growth factor Specificity and biological importance Brain Res 85, 337–341

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel K., Schwab M., and Thoenen H (1975a) Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons. A biochemical and morphological study Brain Res 89, 1–14

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel K., Schwab M., and Thoenen H (1975b) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory, and adrenergic neurons Brain Res 99, 1–16

    Article  CAS  Google Scholar 

  • Stoeckel K, Schwab M., and Thoenen H (1977) Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxins as compared to nerve growth factor and wheat germ agglutinin. Brain Res 132, 273–285.

    Article  CAS  PubMed  Google Scholar 

  • Stone G C, Wilson D L, and Hall M E. (1978) Two-dimensronal gel electrophoresis of proteins in rapid axoplasmic transport Brain Res 144, 287–302

    Article  CAS  PubMed  Google Scholar 

  • Streit P (1980) Selective retrograde labeling indicating the transmitter of neuronal pathways J Comp Neurol. 191, 429–465.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro T. and Komiya Y (1983) Subunit composition specific to axonally transported tubulin Neurosci 4, 943–950

    Article  Google Scholar 

  • Theiler R. and McCLure W O (1977) A comparison of axonally transported proteins in the rat sciatic nerve by in vitro and in vlvo techniques J Neurochem 28, 321–330

    Article  CAS  PubMed  Google Scholar 

  • Toews A, Goodrum J., and Morell P (1979) Axonal transport of phospholipids in rat visual system. J Neurochem 32, 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S and ishikawa H (1980) The movement of membranous organelles in axons Electron microscopic identification of anterogradely and retrogradely transported organelles. J. Cell Biol 84, 513–530.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S. and ishikawa H. (1981) The cytoskeleton in myelinated axons, A serial section study. Biomed Res 2, 424–437

    Google Scholar 

  • Tytell M., Black M., Garner J, and Lasek R. (1981) Axonal transport:Each of the major rate components consist of distinct macromolecular complexes. Science 214, 179–181.

    Article  CAS  PubMed  Google Scholar 

  • Tytell M., Brady S. T., and Lasek R. (1984) Axonal transport of a subclass of tau proteins: Evidence for the regional differentiation of microtubules in neurons Proc Nutl Acad. Sci USA 81, 1570–1574

    Article  CAS  Google Scholar 

  • Tytell M., Gulley R., Wenthold R, and Lasek R. (1980) Fast axonal transport in auditory neurons: A rapidly turned over glycoprotein Proc Natl. Acad. Sci USA 77, 3042–3046.

    Article  CAS  PubMed  Google Scholar 

  • Warr W., deOlmos J., and Heimer L. (1981) Horseradish Peroxidase. The Basic Procedure, in Neuroanatomical Trucing Methods (Helmer L. and Robards M, eds.), pp. 207–262, Plenum, New York.

    Chapter  Google Scholar 

  • Weiss D G (ed.) (1982) Axoplasmic Transport Springer-Verlag, Berlin

    Google Scholar 

  • Weiss D G and Gorio A. (eds ) (1982) Axoplasmc Transport in Physiology and Pathology Springer Verlag, Berlin

    Google Scholar 

  • Weiss P. and Hiscoe H (1948) Experiments on the mechanism of nerve growth J, Exp Zool 107, 315–395.

    Article  CAS  Google Scholar 

  • Wenthold R., Skaggs K, and Reale R (1984) Retrograde axonal transport of antibodies to synaptic membrane components Brain Res 304, 162–165

    Article  CAS  PubMed  Google Scholar 

  • Wessels N, Johnson S, and Nuttall R (1978) Axon initiation and growth cone regeneration in cultured motor neurons. Exp. Cell Res. 117, 335–345.

    Article  Google Scholar 

  • Willard M. (1977) The identification of two intraaxonally transported polypeptides resembling myosin m some respects in the rabbit visua system J. Cell Biol 75, 1–11

    Article  CAS  PubMed  Google Scholar 

  • Willard M. and Simon C (1983) Modulations in neurofilament axonal transport during development of rabbit retinal ganglion cells. Cell 35, 551–559.

    Article  CAS  PubMed  Google Scholar 

  • Willard M, Cowan W M, and Vagelos P. R (1974) The polypeptide composition of intraaxonal transported proteins Evidence for four transport velocities. Proc Natl. Acad. Sci. USA 71, 2183–2187.

    Article  CAS  PubMed  Google Scholar 

  • Willard M., Wiseman M, Levine J., and Skene P (1979) Axonal transport of actin in rabbit retinal ganglion cells J. Cell Biol. 81, 581–591

    Article  CAS  PubMed  Google Scholar 

  • Willingham M and Pastan I. (1978) The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM) Cell 13, 501–507

    Article  CAS  PubMed  Google Scholar 

  • Wilson D L., and Stone G C (1979) Axoplasmlc transport of proteins Ann. Rev Biophys. Bioeng 8, 27–45.

    Article  CAS  Google Scholar 

  • Wujek J. and Lasek R. J (1983) Correlation of axonal regeneration and slow component b in two branches of a single axon. J. Neurosci 3, 243–251.

    CAS  PubMed  Google Scholar 

  • Yamada K, Spooner B, and Wessels N. (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells J Cell Biol 49, 614–635

    Article  CAS  PubMed  Google Scholar 

  • Younkin S, Brett R., Davey B., and Younkin L. (1978) Substances moved by axonal transport and released by nerve stimulation have an innervation-like effect on muscle Science 200, 1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Zatz M. and Barondes S. (1971a) Rapid transport of fucosyl glycoproteins to nerve endings in mouse brain J, Neurochem 18, 1125–1133.

    Article  CAS  Google Scholar 

  • Zatz M and Barondes S (1971b) Particulate and solubilized fucosyl transferases from mouse brain. J Neurochem 18, 1625–1637.

    Article  CAS  PubMed  Google Scholar 

  • Zipser B., Stewart P L., Flanagan T., Flaster M., and Macagno E. (1983) Do monoclonal antibodies stain sets of functionally related leech neurons? Cold Spring Harbor Laboratory Symp. Quat Biol 48, 551–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Brady, S.T. (1985). Axonal Transport Methods and Applications. In: Boulton, A.A., Baker, G.B. (eds) General Neurochemical Techniques. Neuromethods, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-075-x:419

Download citation

  • DOI: https://doi.org/10.1385/0-89603-075-x:419

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-075-6

  • Online ISBN: 978-1-59259-606-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics