Skip to main content

Electrical and Chemical Stimulation of Brain Tissue In Vivo

  • Protocol

Part of the book series: Neuromethods ((NM,volume 1))

Abstract

The use of general systemic manipulations to alter brain activity, often coupled with ex vivo biochemical analysis, has led to significant advances in our understanding of central nervous system (CNS) activity Nevertheless, the search for a clear understanding of the function of separate brain regions has necessitated the use of Intracranial preparations The advantages of this approach are twofold It allows stimulation of localized areas of brain tissue, which is important in the analysis of functions of separate nucler and neural pathways, furthermore the intracranial approach enables us to apply compounds to the CNS that do not readily cross the blood-brain barrier (see Oldendorf, 1971). It is notable that the majority of substances believed to be neurotransmitters fall into this category of compounds

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Aghajaruan G. K. and Davis, M. (1975) A method of direct chemical brain stimulation in behavioral studies using microiontophoresis. Pharmacol Biochem Behav. 3, 127–131.

    Article  Google Scholar 

  • Asanuma, H. and Arnold A. P. (1975) Noxious effects of excessive currents used for intracortical microstimulation. Brain Res 96, 103–107

    Article  PubMed  CAS  Google Scholar 

  • Azami J., Llewlyn M B, and Roberts M H. T. (1980) An extra-fine assembly for intracerebral microinjection. J Physiol (Lond ), 305, 18P–19P.

    Google Scholar 

  • Azami J, Llewelyn M. B, and Roberts M. H T (1982) The contribution of nucleus ventricularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically admmlstered morphine, investigated with the microinjection technique. Pain 12, 229–246.

    Article  PubMed  CAS  Google Scholar 

  • Bielajew C and Shizgal P (1982) Behaviourally derived measures of conduction velocity in the substrate for rewarding medial forebrain bundle stimulation. Brain Res 237, 107–119

    Article  PubMed  CAS  Google Scholar 

  • Blair R., Fishman B, Amit Z., and Weeks J. R (1980) A simple double channel swivel for infusions of fluids into unrestrained animals. Pharmacol. Biochem Behav 12, 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Bodnar R.J., Ellman S J., Steiner S. S., Ackerman R. F, and Coons, E E. (1982) Intracranial self-stimulation Temporal interactions among mesencephalic and diencephalic wtes. Physiol. and Behav. 28, 473–482

    Article  CAS  Google Scholar 

  • Bourke R. S., Kimelberg H F, Nelson L R, Barron K. D., Anen E L, Popp A. J., and Waldman J. B (1980) Biology of Glial Swelling in Experimental Brain Edema, in Advances in Neurology, Vol 28 (Cervos-Navarro J and Ferszt R, eds.), Raven, New York

    Google Scholar 

  • Bozarth M. A. and Wrse R A (1980) Electrolytic microinfusion transducer. An alternative method of intracranial drug application. J, Neurosci Methods 2, 273–275

    Article  CAS  Google Scholar 

  • Bozarth M. A and Wise R. A (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28, 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Britt M D. and Wise R A. (1983) Ventral tegmental site of opiate reward. Brain Res 258, 105–108

    Article  CAS  Google Scholar 

  • Brown Z. W., Amit Z, and Weeks J. R. (1976) Simple flo-thru swivel for infusions into unrestrained animals. Pharmacol Biochem. Behav. 5, 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Bureš J, Burešová 0, and Huston J. P. (1983) Techniqes and Basic Experiments for the Study of Brain and Behaviour, Elsevier, Amsterdam.

    Google Scholar 

  • Byrne J. H. (1981) Intracellular Stimulation, in Electrical Stimulation Research Technniques (Patterson M M and Kesner R. P., eds.), pp 37–59, Academic, New York.

    Chapter  Google Scholar 

  • Cooley R K. and Vanderwolf C H. (1978) Stereotaxic Surgery in the Rat. A Photographic Series A J Kirby, London, Ontario, Canada

    Google Scholar 

  • Cox B., Davis A., Juxton V, Lee T. F, and Martin D. (1983) A role for an indoleamine other than 5-hydroxytryptamine in the hypothalamic thermoregulatory pathways of the rat. J Physiol. (Lond) 337, 441–450.

    CAS  Google Scholar 

  • Criswell H. E (1977) A simple chronic microinjection system for use with chemitrodes. Pharmacol Biochem Behav. 6, 237–238.

    Article  PubMed  CAS  Google Scholar 

  • De Groot J (1959) The Rnt Forebrain in Stereotaxic Coordinates North-Holland, Amsterdam

    Google Scholar 

  • Delgado J. M R (1964) Electrodes for Extracellular Recording and Stimulation, in Physical Techniques in Biological Research, Vol 5, (Nastuk W L, ed), pp 88–143, Academic, New York

    Google Scholar 

  • Delgado J M R, De Feudis F V, Roth R H, Ryugo D K, and Mrtruka B M (1972) Dialytrode for long term intracerebral infusion in awake monkeys Arch Int Pharamacodyn Ther 198, 9–21

    CAS  Google Scholar 

  • Deutsch J A (1964) Behavioral measurement ot the neural refractory period and its application to inltracranial self-stimulation. Comp Physiol Psychol 58, 1–9

    Article  CAS  Google Scholar 

  • Dismukes R K (1979) New concepts of molecular communication among neurons. Behav Brain Sci 2, 409–448

    Article  Google Scholar 

  • Doty R. W (1969) Electrical stimulation of the brain in behavioral context. Ann Rev Psychol 20, 289–320

    Article  CAS  Google Scholar 

  • Doty R W and Bartlett J R (1981) Stimulation of the Brain Via Metallic Electrodes, in Electrical Stimulation Research Techhniques (Patterson M M and Kesner R P, eds ), pp 72–103, Academic, New York

    Google Scholar 

  • Evans B K, Armstrong S, Smger G, Cooke R D, and Burnstock G (1975) Intracranial injection of drugs Comparison of diffusion of 6-OHDA and Guanethidine. Pharmacol Biochem Behav 3,205–217

    Article  PubMed  CAS  Google Scholar 

  • Fifková E. and Maršala J (1967) Stereotaxlc Atlases for the Cat, Rabbit and Rat, in Electrophysiological Methods in Biological Research (Bure S J, Petran M, and Zachar J, eds ) pp 653–731 Academic, New York

    Google Scholar 

  • Florey E (1967) Neurotransmitters and modulators in the animal kingdom Fed Proc 26, 1164–1178

    PubMed  CAS  Google Scholar 

  • Fritsch G and Hitzig E. (1870) Uber die elektrlsche Erregbarkeit des Grosshirns Arch Amt Physiol 37, 300–332

    Google Scholar 

  • Gallistel C R, Rolls E T, and Greene D (1969) Neuron function Inferred from behavioral and electrophysiologlcal estrmates of refractory period. Science 166, 1028–1030

    Article  PubMed  CAS  Google Scholar 

  • Garrlgues A M and Cazala P (1983) Central catecholamine metabohsm and hypothalamic self-stimulation behaviour in two inbred strains of mice. Brain Res 265, 265–271

    Article  Google Scholar 

  • Goeders N E and Smith J E (1983) Cortical involvement in cocaine reinforcement Science 221, 773–775

    Article  PubMed  CAS  Google Scholar 

  • Goeders N E and Smith J E (1985) Parameters of Intracranial Self-Administration of Cocaine Into the Pre-Frontal Cortex, in Problems of Drug Dependence, NIDA Research Monographs (in press )

    Google Scholar 

  • Goeders N E, Lane J D, and Smith J E (1984) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem. Behav 20, 451–455

    Article  PubMed  CAS  Google Scholar 

  • Goodrich C A, Greehey B, Miller T B., and Pappenheimer J R (1969) Cerebral ventricular infusions in unrestrained rat J Appl Physiol 26, 137–140

    PubMed  CAS  Google Scholar 

  • Greenshaw A J and Burešová O (1982) Learned taste aversion to saccharin following intraventricular or intraperitoneal administration of d,l-amphetmine Pharmacol Biochem Behav 17, 1129–1133

    Article  CAS  Google Scholar 

  • Hashlmoto M (1915a) Fleberstudlen I Mlttellung Uber die spezlflsche Uberempfmdllchkelt des Warmzentrums an sensibilisierten tieren Arch Exper Pathol Phamakol 70, 370–393

    Article  Google Scholar 

  • Hashlmoto M (1915b) Fleberstudlen. II Mlttellung Uber den Emfluss unmltelbaver Erwaimung und Abkuhlung des Warmzentrums auf die Temperaturwlrkungen von verschledenen pyrogenen und antlphyretlschen Substanzen Arch Exper Pathol. Pharmakol 70, 394–425

    Article  Google Scholar 

  • Hess W R. (1928) Hlrnrelzversuche uber den mechamsmus des schlafes Arch Psychiatr 86, 287–292

    Google Scholar 

  • Hurt E A, Hanaway J, and Netsky M G (1971) Stereotaxlc atlas of the mesencephalon m the albino rat. Confin Neurol (Basel) 33, 93–115

    Article  PubMed  CAS  Google Scholar 

  • Huston J P and Jakobartl L(1977) Evidence for selective susceptlblhty of hlppocampus to spreading depression induced by vasopressm Neurosci Lett. 1, 291–296

    Article  Google Scholar 

  • Imperato A and Di Chlara G (1984) Trans-stnatal dialysis coupled to reverse phase high performance liquid chromatography. A new method for the study of the in vivo release of endogenous dopamme and matabolltes J Neurosci 4, 966–977

    PubMed  CAS  Google Scholar 

  • isaacson R L. (1981) Brain Stimulation Effects Related to Those of Lesions, in, Electrical Stmulation Research Techniques (Patterson M M and Kesner R P, eds ), pp 205–217

    Google Scholar 

  • Iwamoto E T, Wllllamson E C, Wash C, and Hancock R (1984) An improved drug mfuslon pump for injecting nanoliter volumes subcortlcally m awake rats Phamacol Biochem Behav 20, 959–963

    Article  CAS  Google Scholar 

  • Johnson R D. and Justice J B (1983) Model studies for brain dialysis Brain Res Bull 10, 567–571

    Article  PubMed  CAS  Google Scholar 

  • Jones R S G, Juorlo A V., and Boulton A. A (1981) Changes m levels of dopamme and tyramme m the rat caudate nucleus following alterations of impulse flow in the nigro-stnatal pathway J. Neurochem 40, 396–401.

    Article  Google Scholar 

  • Katz J (1966) Nerve Muscle and Syapse McGraw-Hill, New York

    Google Scholar 

  • Komg J. F R. and Kllppel R A. (1974) The Rat Brain. A Stereotaxic Atlas of the Forebvain and Lower Parts of the Brain Stem Krieger, New York.

    Google Scholar 

  • Kuffler S. W, Nicholls J G, and Martm A A (1984) Frufn Neuroll to Brain, 2nd Ed., Smauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Llewelyn M. B, Azami J, and Roberts M H T (1983) Effects of 5-hydroxytryptamine applied into nucleus raphe magnus on noclceptive thresholds and neuron firing rate. Brain Res 258, 59–68

    Article  CAS  Google Scholar 

  • Martin R. L and Hammond G R (1983) Lateral hypothalamic electrode implantation disrupts llthlum chloride based generalized aversion to sodium chloride by enhancing sodium appetite Physiol Psychol 11, 63–72

    CAS  Google Scholar 

  • Mlllaressls E (1981) A mmlature moveable electrode for brain stimulation in small ammals Brain Res Bull 7, 715–718

    Article  Google Scholar 

  • Miliaressls E and Phillipe L (1984) The pontine substrate of circling Brain Res 293, 143–152

    Article  Google Scholar 

  • Moroz V M. and Bureš J (1982) Cerebellar unit activity and the move-ment disruption induced by caudate stimulation in rats Gen Physiol Biophys 1, 53–70.

    Google Scholar 

  • Myers R D (1974) Handbook of Drug and Chemical Stmulation of the Brain Nostrand Rhemold, New York

    Google Scholar 

  • Myers R D and Hoch D B. (1978) 14C-Dopamine microinjected into the brainstem of the rat Dispersion kinetics, site content and functional dose Brain Res Bull 3, 601–609

    Article  PubMed  CAS  Google Scholar 

  • Nicolaidis S, Rowland N, Merle M-J, Marfaing-Jallat P, and Pesez A (1974) A flexible techinque for long term infusions in unrestrained animals Pharmacol Biochem Behav 2, 131–136

    Article  PubMed  CAS  Google Scholar 

  • Oitzl M S and Huston J P (1984) Electroencepholographic spreading depression and concomitant behavioral changes induced by intrahippocampal injections of ACTH1-24 and D-Ala2-Met enkephalinamide in the rat Brain Res 308, 33–42

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf W H (1971) Brain uptake of radiolabelled amino-acids, amines and hexoses after arterial injection Am J Physiol 221, 1629–1639

    PubMed  CAS  Google Scholar 

  • Olds M E. (1982) Reinforcing effects of morphine in the nucleus accumbens Brain Res 237, 429–440

    Article  PubMed  CAS  Google Scholar 

  • Patterson M M and Kesner R P (Eds) (1981) Electrical Stimulation Research Techniques Academic, New York

    Google Scholar 

  • Paxinos G and Watson C (1982) The Rat Brain in Stereotaxic Co-ordinates Academic, New York

    Google Scholar 

  • Pellegrino L J, Pellegrino A S, and Cushman A J (1979) A Stereotaxic Atlas of the Rat Brian Appleton-Century-Crofts, New York

    Google Scholar 

  • Pickens R and Thompson T (1975) Intravenous preparation for self-administration of drugs by animals Am Psychologist 30, 274–275

    Article  CAS  Google Scholar 

  • Porrino L J., Esposito R N, Seeger T F, Crane A M, Pert A, and Sokoloff L (1984) Metabolic mapping of the brain during rewarding self-stimulation Science 224, 306–309

    Article  PubMed  CAS  Google Scholar 

  • Ranck J B Jr (1981) Extracellular Stimulation, in Electrical Stimulation Research Techniques (M M Patterson and R P Kesner, eds), pp 1–36, Academic, New York

    Chapter  Google Scholar 

  • Ranck J B Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system? Brain Res 98, 417–440

    Article  PubMed  Google Scholar 

  • Redgrave P (1978) Modulation of mtracramal self-stimulation behaviour by local perfusions of dopamine, noradrenaline and serotonin within the caudate nucleus and nucleus accumbens Brain Res 155, 277–295

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A (1972) Intracranial chemical injection and behavior A critical review Behav Biol 7, 601–641

    Article  PubMed  CAS  Google Scholar 

  • Sheer D E. (Ed ) (1961) Electrical Stimulation of the Brain University of Texas, Austin, Texas

    Google Scholar 

  • Simonoff L N. (1866) Die hemmungs mechanismen der Sangethiere experimentell bemeisen Arch Anat Physiol, Leipzig 33, 545–564

    Google Scholar 

  • Sprick U., Oitzl M-S, Ornstein K., and Huston J P (1981) Spreading depression induced by microinjection of enkephalins into the hippocampus and neocortex Brain Res 210, 243–252

    Article  PubMed  CAS  Google Scholar 

  • Tossman U and Ungerstedt U (1981) Neuroleptic action on putative amino-acid neurotransmitters in the brain studied with a new technique of dialysis Neurosci Litt Suppl 7, S749.

    Google Scholar 

  • Urquhart J, Fara J W, and Willis K L. (1984) Rate-controlled delivery systems in drug and hormone research Am Rev Pharmacol Tosxicol 24, 199–236

    Article  CAS  Google Scholar 

  • von Euler C and Holmgren B (1956) The thyroxine “receptor” of the thyroid-piturtary system. J Physiol. (Lond) 131, 125–136

    Google Scholar 

  • van Heuven-Nolsen D, van Wolfswinkel L, van Ree J, and Versteeg D H G (1983) Electrical stimulation of the ventral tegmental area and catecholamine metabolism in discrete regions of the rat brain Brain Res 268, 362–366

    Article  PubMed  Google Scholar 

  • Walls E K and Wishart T B (1977) Reliable method for cannulation of the third ventricle of the rat Physiol Behav 19, 171–173

    Article  PubMed  CAS  Google Scholar 

  • White N (1976) Strength-duration analysis of the organisatron of Brainforcement pathways in the medial forebrain bundle of rats Brain Res. 110, 575–591.

    Article  PubMed  CAS  Google Scholar 

  • Wyss J M and Goldstein R (1976) Lesion artifact in brain stimulation experiments Physiol Behav 16, 387–389

    Article  PubMed  CAS  Google Scholar 

  • Yadin E., Guarini V, and Gallistel C R (1983) Unilaterally activated systems in rats self-stimulating at sites in the medial forebrain bundle, medial prefrontal cortex or locus coeruleus Brain Res 266, 39–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Greenshaw, A.J. (1985). Electrical and Chemical Stimulation of Brain Tissue In Vivo. In: Boulton, A.A., Baker, G.B. (eds) General Neurochemical Techniques. Neuromethods, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-075-x:233

Download citation

  • DOI: https://doi.org/10.1385/0-89603-075-x:233

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-075-6

  • Online ISBN: 978-1-59259-606-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics