Skip to main content

Identification of Central Transmitters

Microiontophoresis and Micropressure Techniques

  • Protocol
General Neurochemical Techniques

Part of the book series: Neuromethods ((NM,volume 1))

  • 1889 Accesses

Abstract

The synapse is recognized as the major structure of interneuronal communication, and a likely site of Integration and information storage within networks of neurons and the central nervous system itself Communication via these synaptic contacts involves a process of transduction of electrical signals (action potentials), to chemical signals (release of transmitter and its activation of postsynaptic receptors), and then back to electrical information (postsynaptic potentials) The chemical step in this process dictates that the pharmacology of synaptic transmission is of substantial importance in determining the functions of single neurons and their interactions with each other Synapses with in the central nervous system are not readily accessible to experimenters because of the microcosmic scale of these structures and the complexity of their anatomical relationships with other neurons, glial cells, and so on Hence, the necessity for techniques that permit the delivery of microquantities of drugs, putative transmitters, and ions to the vicinity of synaptic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker J. L. and Levitan H. (1972) The antagonism between salicylate-induced and pH-induced changes in the membrane conductance of molluscan neurons. Biochim Biophys. Acta 274, 638–643.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. L. and McBurney R. N. (1979) Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons. Proc. Roy Soc Lond B 206, 319–327

    Article  CAS  Google Scholar 

  • Barker J. L., McBurney R. N., and MacDonald J. F. (1982) Fluctuation analysis of neutral amino acid responses in cultured mouse spinal cord neurons studied under voltage-clamp. J. Physiol (London) 322, 365–387

    PubMed  CAS  Google Scholar 

  • Barker J. L., McBurney R. N., and Mathers D. A. (1983) Convulsantinduced depression of amino acid responses in cultured mouse spinal neurons studied under voltage-clamp. Brit J Pharmacol 80, 619–629

    Article  CAS  Google Scholar 

  • Barker J. L. and Ransom B. R. (1978) Amino acid pharmacology of mammalian central neurons grown in tissue culture. J Physiol. (London) 280, 331–354

    PubMed  CAS  Google Scholar 

  • Begnisich T. and Danko M. (1983) Hydrogen block of the sodium pore in squid giant axon. J. Gen Physiol 82, 599–618

    Article  Google Scholar 

  • Bradshaw C. M., Roberts, M. H. T., and Szabadi, E. (1973) Kinetics of the release of noradrenaline from micropipettes interaction between ejecting and retaining currents. Brit. J Pharmacol 49, 667–677.

    Article  CAS  Google Scholar 

  • Bradshaw C. M. and Szabadi E. (1974) The measurement of dose in microelectrophoresis experiments. Neuropharmacology 13, 407–415

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and Griffith W. H. (1983) Persistent slow inward calcium current in voltage-clamped hippocampal neurons of the guinea-pig. J Physiol (London) 337, 303–320.

    PubMed  CAS  Google Scholar 

  • Choi D. W. and Fischbach G. D. (1981) GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol 45, 605–620.

    PubMed  CAS  Google Scholar 

  • Del Castillo J. and Katz, B. (1955) On the localization of acetylcholine receptors. J. Physiol. (London) 128, 157–181

    Google Scholar 

  • Dichter M. A. (1980) Physiological ldentification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res 190, 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Dionne V. E., Steinbach J. H., and Steven C.. F. (1978) An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junction. J Physiol (London) 281, 421–444.

    PubMed  CAS  Google Scholar 

  • Dray A., Hanley M. R., Pinncock R. D., and Sandberg B. E. B. (1983) A comparison of the release of substance P and some synthetic analogues from micropipets by microiontophoresis or pressure. Neuropharmocology 22, 859–863

    Article  CAS  Google Scholar 

  • Dreyer F. and Peper K. (1974) Iontophoretic application of acetylcholine advantages of high resistance micropipets in connection with an electronic current pump. Pflugers Arch 348, 263–272

    Article  PubMed  CAS  Google Scholar 

  • Dreyer F., Peper K., and Sterz R. (1978) Determination of dose-response curves by quantitative iontophoresis at the frog neuromuscular junction. J Physiol (London) 28, 395–419

    Google Scholar 

  • Dude1 J. (1975) Kinetics of postsynaptic action of glutamate pulses applied iontophoretically through high-resistance micropipets. Pflugers Arch 356, 329–346

    Article  Google Scholar 

  • Gruol D. L., Barker J. L., Huang M. L., MacDonald J. F., and Smith T. G. (1980) Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res. 183, 247–252

    Article  PubMed  CAS  Google Scholar 

  • Guyenet P. G., Mroz E. A., Aghajarnian G. K., and Leeman S. E. (1979) Delayed iontophoretic ejection of substance P from glass mlcropipets correlation with time-course of neuronal excitation in vivo. Neuropharmacology 18, 553–558

    Article  PubMed  CAS  Google Scholar 

  • Heyer E. J., and Macdonald R. L. (1982) Calcium-and sodiumdependent action potentials of mouse spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol 47, 641–655

    PubMed  CAS  Google Scholar 

  • Hicks T. P. (1984) The history and development of microiontophoresis in experimental neurobiology. Prog. Neurobiol 22, 185–240.

    Article  PubMed  CAS  Google Scholar 

  • Hoffer B. J., Neff N. H., and Siggins G. R. (1971) Microiontophoretic release of norepinephrine from micropipets. Neuropharmacology 10, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Karlin A. (1983) Anatomy of a receptor. Neurosci Cammentaries 1, 111–123.

    Google Scholar 

  • Kelly J. S. (1975) Microiontophoretic Application of Drugs Onto Single Neurons, in Handbook of Psychopharmacology, vol 2 (Iversen L L, Iversen S.D, and Snyder S H., eds. ), pp. 29–67. Plenum, New York

    Google Scholar 

  • Krishtal O. P. A and Pidoplichko V. I. (1980) A receptor for protons in the nerve cell membrane. Neurosci 5, 2325–2327

    Article  CAS  Google Scholar 

  • Krnjević K (1971) Microiontophoresis, in Methods of Neurochemstry, vol. 1 (Fried R., ed.). pp 130–172 Marcel Dekker, New York

    Google Scholar 

  • Krnjević K, Puil E., and Werman R. (1975) Evidence for Ca2+-activated K + conductance in cat spinal motoneurons from intracellular EGTA injections. Can J Physiol Pharmacol 53, 1214–1218

    Article  PubMed  Google Scholar 

  • Krnjević K., Mitchell J F, and Szerb J. C. (1963) Determination of iontophoretic release of acetylcholine from micropipets. J Physiol (London) 165, 421–436.

    PubMed  Google Scholar 

  • Krnjević K., and Philhs J. W. (1963) Iontophoretlc studies of neurons in mammalian cerebral cortex. J. Physiol. (London) 165, 274–304.

    Google Scholar 

  • Krnjević K., Puil E., and Werman R (1978) EGTA and motoneuronal after-potentials. J Physiol (London) 275, 199–223.

    PubMed  Google Scholar 

  • Krnjević K. and Whittaker V. P. (1965) Excitation and depression of cortical neurons by brain fractions released from micropipets. J Physiol. (London) 179, 298–322

    Google Scholar 

  • MacDonald J. F. (1984) Substitution of extracellular sodium ions blocks the voltage-dependent decrease of input conductance evoked by L-aspartate. Can J Physiol. Pharmacol. 62, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. F. and Barker J. L. (1982) Multiple actions of picomolar concentrations of flurazepam on the excitability of cultured mouse spinal neurons. Brain Res. 246, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. F., and Nistri A. (1978) A comparison of the action of glutamate, ibotenate, and other related amino acids on feline spinal interneurons. J. Physiol. (London) 275, 449–465

    CAS  Google Scholar 

  • MacDonald J. F., and Schneiderman J. H. (1984) L-aspartic acid potentiates’ slow’ inward current in cultured spinal cord neurons. Brain Res. 296, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. F., and Wojtowicz J. M. (1982) The effects of L-glutamate and its analogues upon the membrane conductance of central murine neurons in culture. Can. J Physiol. Pharmacol 60, 282–296

    Article  PubMed  CAS  Google Scholar 

  • MacVicar B. A., and Dudek F. E. (1982) Electrotonic coupling between granule cells of rat dentate gyrus physiological anatomical evidence. J Neurophysiol 47, 579–592

    PubMed  CAS  Google Scholar 

  • McCaman R. E., McKenna D. G., and Ono J. K. (1977) A pressure systern for intracellular and extracellular electrons of picoliter volumes. Brain Res 136, 141–147

    Article  PubMed  CAS  Google Scholar 

  • Marshall K. C., and Engberg I. (1980) The effects of hydrogen ion on spinal neurons. Can J Physiol. Pharmacol 58, 650–655.

    Article  PubMed  CAS  Google Scholar 

  • Mathers, D. A., and Barker J. L. (1982) Chemically induced ion-channels in nerve cell membranes. Int. Rev Neurobiol 23, 1–34.

    Article  PubMed  CAS  Google Scholar 

  • Palmer M. R., Wuerthele S. M., and Hoffer B. J. (1980) Physical and physiological characteristics of micropressure election of drugs from multibarreled pipets. Neuropharmacology 19, 931–938

    Article  PubMed  CAS  Google Scholar 

  • Poulain P. and Carette B. (1981) Pressure election of drugs on single neurons in vivo Technical considerations and application to the study of estradiol effects. Brain Res Bull 7, 3340

    Article  Google Scholar 

  • Purves R. D. (1977) The release of drugs from iontophoretic pipets. J Theor. Biol. 67, 789–798.

    Article  Google Scholar 

  • Purves R. D. (1979) The physics of iontophoretic pipets. J Neurosci Meth 1, 165–178

    Article  CAS  Google Scholar 

  • Purves R. D. (1980) Effect of drug concentration on release from iontophoretic pipets. J Physiol (London) 300, 72P–73P

    Google Scholar 

  • Quastel D. M. J., and Pennefather P. (1983) Receptor blockade and synaptic function. J Neural Transm, Suppl 18, 61–81

    CAS  Google Scholar 

  • Rutgers A. J. (1940) Streaming potentials and surface conductance. Trans Faraday Soc 36, 69–80

    Article  CAS  Google Scholar 

  • Sakai M., Swartz B. E., and Woody C. D. (1979) Controlled microrelease of pharmacological agents: measurements of volume ejected. in vivo through fme tipped glass microelectrodes by pressure. Neuropharmacology 18, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Segal M., and Barker J. L. (1984) Rat hippocampal neurons in culture voltage clamp analysis of inhibitory synaptic connections. J Neurophysiol 52, 469–487

    PubMed  CAS  Google Scholar 

  • Spitzer N. C. (1979) Low pH selectively blocks calcium action potentials in amphlbian neurons developing in culture. Brain Res. 161, 555–559.

    Article  PubMed  CAS  Google Scholar 

  • Study R. E., and Barker J. L. (1981) Diazepam and (-) pentobarbital fluctuation analysis reveals different mechanisms for potentiation of GABA responses in cultured central neurons. Proc Nat Acad Sci USA 78, 7180–7184.

    Article  PubMed  CAS  Google Scholar 

  • Werman R. (1966) Criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18, 745–766

    Article  PubMed  CAS  Google Scholar 

  • Werman R. (1969) Electrophysiological approach to drug-receptor mechamsms. Comp Biochem Physiol. 30, 997–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

MacDonald, J.F. (1985). Identification of Central Transmitters. In: Boulton, A.A., Baker, G.B. (eds) General Neurochemical Techniques. Neuromethods, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-075-x:197

Download citation

  • DOI: https://doi.org/10.1385/0-89603-075-x:197

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-075-6

  • Online ISBN: 978-1-59259-606-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics