Protein Threading

  • Andrew E. Torda
Part of the Springer Protocols Handbooks book series (SPH)


Theoreticians have been trying to predict protein structure based on sequence information for decades. Literally, more than a quarter century ago, there were optimistic reports that one could use simulation methods to calculate the structure of a small protein given only its sequence (xc1|1,2). To this day, devotees of this approach persevere and may ultimately win over the problems with force fields and the enormous search space. In the meantime, a class of protein structure methods have developed, traveling under names such as “protein threading” and “fold recognition.”


Force Field Protein Data Bank Score Function Basic Local Alignment Search Tool Fold Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Levitt, M. (1975) Computer simulation of protein folding. Nature 253, 694–698.PubMedCrossRefGoogle Scholar
  2. 2.
    Levitt, M. (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59–107.PubMedCrossRefGoogle Scholar
  3. 3.
    Crippen, G. M. and Maiorov, V. N. (1995) How many protein-folding motifs are there? J. Mol. Biol. 252, 144–151.PubMedCrossRefGoogle Scholar
  4. 4.
    Leonov, H., Mitchell, J. S. B., and Arkin, I. T. (2003) Monte Carlo estimation of the number of possible protein folds: effects of sampling bias and folds distributions. Proteins 51, 352–359.PubMedCrossRefGoogle Scholar
  5. 5.
    Wolf, Y. I., Grishin, N. V., and Koonin, E. V. (2000) Estimating the number of protein folds and families from complete genome data. J. Mol. Biol. 299, 897–905.PubMedCrossRefGoogle Scholar
  6. 6.
    Govindarajan, S., Recabarren, R., and Goldstein, R. K. (1999) Estimating the total number of protein folds. Proteins 35, 408–414.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, C. O. and DeLisi, C. (1998) Estimating the number of protein folds. J. Mol. Biol. 284, 1301–1305.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, Z. X. (1998) A re-estimation for the total numbers of protein folds and superfamilies. Protein Eng. 11, 621–626.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, C. T. (1997) Relations of the numbers of protein sequences, families and folds. Protein Eng. 10, 757–761.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, Z. X. (1996) How many fold types of protein are there in nature? Proteins 26, 186–191.PubMedCrossRefGoogle Scholar
  11. 11.
    Orengo, C. A., Jones, D. T., and Thornton, J.M. (1994) Protein superfamilies and domain superfolds. Nature 372, 631–634.PubMedCrossRefGoogle Scholar
  12. 12.
    Chothia, C. (1992) Proteins-1000 families for the molecular biologist. Nature 357, 543–544.PubMedCrossRefGoogle Scholar
  13. 13.
    England, J. L., Shakhnovich, B. E., and Shakhnovich, E. I. (2003) Natural selection of more designable folds: a mechanism for thermophilic adaptation. Proc. Natl. Acad. Sci. USA 100, 8727–8731.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, H., Tang, C., and Wingreen, N. S. (2002) Designability of protein structures: a latticemodel study using the Miyazawa-Jernigan matrix. Proteins 49, 403–412.PubMedCrossRefGoogle Scholar
  15. 15.
    Miller, J., Zeng, C., Wingreen, N. S., and Tang, C. (2002) Emergence of highly designable protein-backbone conformations in an off-lattice model. Proteins 47, 506–512.PubMedCrossRefGoogle Scholar
  16. 16.
    Helling, R., Li, H., Melin, R., et al. (2001) The designability of protein structures. J. Mol. Graph. Mod. 19, 157–167.CrossRefGoogle Scholar
  17. 17.
    Shahrezaei, V. and Ejtehadi, M. R. (2000) Geometry selects highly designable structures. J. Chem. Phys. 113, 6437–6442.CrossRefGoogle Scholar
  18. 18.
    Bornberg-Bauer, E. (1997) How are model protein structures distributed in sequence space? Biophys. J. 73, 2393–2403.PubMedCrossRefGoogle Scholar
  19. 19.
    Govindarajan, S. and Goldstein, R. A. (1996) Why are some protein structures so common? Proc. Natl. Acad. Sci. USA 93, 3341–3345.PubMedCrossRefGoogle Scholar
  20. 20.
    Orengo, C. (1994) Classification of protein folds. Curr. Opin. Struct. Biol. 4, 429–440.CrossRefGoogle Scholar
  21. 21.
    Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  22. 22.
    Brenner, S. E., Chothia, C., and Hubbard, T. J. P. (1998) Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA 95, 6073–6078.PubMedCrossRefGoogle Scholar
  23. 23.
    Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Pearson, W. and Lipman, D. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.PubMedCrossRefGoogle Scholar
  25. 25.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  26. 26.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  27. 27.
    Madej, T., Gibrat, J. F., and Bryant, S. H. (1995) Threading a database of protein cores. Proteins 23, 356–369.PubMedCrossRefGoogle Scholar
  28. 28.
    Huber, T. and Torda, A. E. (2002) Protein structure prediction by threading: force field philosophy, approaches to alignment. In Tsigelny, I. F.] (ed.), Protein Structure Prediction: A Bioinformatic Approach, International University Line, La Jolla, pp. 263–Google Scholar
  29. 29.
    Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.CrossRefGoogle Scholar
  30. 30.
    van Gunsteren, W. F., Billeter, S. R., Eising, A. A., et al. (1996) Biomolecular simulation: the GROMOS96 manual and user guide, vdf Hochschulverlag AG an der ETH Zurich and BIOMOS b.v., Zurich and Groningen.Google Scholar
  31. 31.
    MacKerell, A. D., Bashford, D., Bellott, M., et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.CrossRefGoogle Scholar
  32. 32.
    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM-a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.CrossRefGoogle Scholar
  33. 33.
    Chandler, D. (1987) Introduction to Modern Statistical Mechanics, Oxford University Press, New York.Google Scholar
  34. 34.
    Miyazawa, S. and Jernigan, R. L. (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552.CrossRefGoogle Scholar
  35. 35.
    Tanaka, S. and Scheraga, H. A. (1976) Statistical mechanical treatment of protein conformation. 1. Conformational properties of amino-acids in proteins. Macromolecules 9, 142–159.PubMedCrossRefGoogle Scholar
  36. 36.
    Sippl, M. J. (1993) Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7,473–501.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) A new approach to protein fold recognition. Nature 358, 86–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Skolnick, J., Jaroszewski, L., Kolinski, A., and Godzik, A. (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 6, 676–688.PubMedCrossRefGoogle Scholar
  39. 39.
    Ben-Naim, A. (1997) Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706.CrossRefGoogle Scholar
  40. 40.
    Thomas, P. D. and Dill, K. (1996) Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469.PubMedCrossRefGoogle Scholar
  41. 41.
    Sippl, M. J. (1996) Helmholtz free energy of peptide hydrogen bonds in proteins. J. Mol. Biol. 260, 644–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Sippl, M. J., Ortner, M., Jaritz, M., Lackner, P., and Flockner, H. (1996) Helmholtz free energies of atom pair interactions in proteins. Fold. Des. 1, 289–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Shortle, D. (2003) Propensities, probabilities, and the Boltzmann hypothesis. Protein Sci. 12, 1298–1302.PubMedCrossRefGoogle Scholar
  44. 44.
    Crippen, G. M. and Snow, M. E. (1990) A 1.8 angstrom resolution potential function for protein folding. Biopolymers 29, 1479–1489.PubMedCrossRefGoogle Scholar
  45. 45.
    Crippen, G. M. (1996) Easily searched protein folding potentials. J. Mol. Biol. 260, 467–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Goldstein, R. A., Luthey-Schulten, Z. A., and Wolynes, P. G. (1992) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. USA 89, 9029–9033.PubMedCrossRefGoogle Scholar
  47. 47.
    Maiorov, V. N. and Crippen, G. M. (1992) Contact potential that recognizes the correct folding of globular-proteins. J. Mol. Biol. 227, 876–888.PubMedCrossRefGoogle Scholar
  48. 48.
    Seetharamulu, P. and Crippen, G. M. (1991) A potential function for protein folding. J. Math. Chem. 6, 91–110.CrossRefGoogle Scholar
  49. 49.
    Ulrich, P., Scott, W., van Gunsteren, W. F., and Torda, A. E. (1997) Protein structure prediction force fields-parametrization with quasi-Newtonian dynamics. Proteins 27, 367–384.PubMedCrossRefGoogle Scholar
  50. 50.
    Huber, T. and Torda, A. E. (1998) Protein fold recognition without Boltzmann statistics or explicit physical basis. Protein Sci. 7, 142–149.PubMedCrossRefGoogle Scholar
  51. 51.
    Hao, M. H. and Scheraga, H. A. (1996) How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. USA 93, 4984–4989.PubMedCrossRefGoogle Scholar
  52. 52.
    Mirny, L. A., and Shakhnovich, E. I. (1996) How to derive a protein folding potential-a new approach to an old problem. J. Mol. Biol. 264, 1164–1179.PubMedCrossRefGoogle Scholar
  53. 53.
    Koretke, K. K., Luthey-Schulten, Z., and Wolynes, P. G. (1996) Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059.PubMedCrossRefGoogle Scholar
  54. 54.
    Lemer, C. M., Rooman, M. J., and Wodak, S. J. (1995) Protein structure prediction by threading methods: evaluation of current techniques. Proteins 23, 337–355.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang, J., Carrillo, M. W., Waugh, A., Wei, L. P., and Altman, R. B. (2002) Scoring functions sensitive to alignment error have a more difficult search: a paradox for threading. In: (eiEaton, G. R., Wiley, D. C., and Jardetzky, O., eds.) Structures and Mechanisms: From Ashes to Enzymes, vol. 827. Oxford University Press, Oxford, UK: 309–320.CrossRefGoogle Scholar
  56. 56.
    Lathrop, R. H. (1994) The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 7, 1059–1068.PubMedCrossRefGoogle Scholar
  57. 57.
    Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.PubMedCrossRefGoogle Scholar
  58. 58.
    Needleman, S.B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.PubMedCrossRefGoogle Scholar
  59. 59.
    Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.PubMedCrossRefGoogle Scholar
  60. 60.
    Bryant, S. H. and Lawrence, C. E. (1993) An empirical energy function for threading protein-sequence through the folding motif. Proteins 16, 92–112.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilmanns, M. and Eisenberg, D. (1995) Inverse protein folding by the residue pair preference profile method: estimating the correctness of alignments of structurally compatible sequences. Protein Eng. 8, 627–639.PubMedCrossRefGoogle Scholar
  62. 62.
    Godzik, A., Kolinski, A., and Skolnick, J. (1992) Topology fingerprint approach to the inverse protein folding problem. J. Mol. Biol. 227, 227–238.PubMedCrossRefGoogle Scholar
  63. 63.
    Taylor, W. R. (1997) Multiple sequence threading: an analysis of alignment quality and stability. J. Mol. Biol. 269, 902–943.PubMedCrossRefGoogle Scholar
  64. 64.
    Huber, T. and Torda, A. E. (1999) Protein sequence threading, the alignment problem and a two step strategy. J. Comput. Chem. 20, 1455–1467.CrossRefGoogle Scholar
  65. 65.
    Xu, Y. and Xu, D. (2000) Protein threading using prospect: design and evaluation. Proteins 40, 343–354.PubMedCrossRefGoogle Scholar
  66. 66.
    Lathrop, R. H. (1999) An anytime local-to-global optimization algorithm for protein threading in o(m(2)n(2)) space. J. Comput. Biol. 6, 405–418.PubMedCrossRefGoogle Scholar
  67. 67.
    Xu, Y. and Uberbacher, E. C. (1996) A polynomial-time algorithm for a class of protein threading problems. Comput. Appl. Biosci. 12, 511–517.PubMedGoogle Scholar
  68. 68.
    Lathrop, R. H. and Smith, T. F. (1996) Global optimum protein threading with gapped alignment and empirical pair score functions. J. Mol. Biol. 255, 641–665.PubMedCrossRefGoogle Scholar
  69. 69.
    Xu, J. and Li, M. (2003) Assessment of RAPTOR’s linear programming approach in CAFASP3. Proteins 53, 579–584.PubMedCrossRefGoogle Scholar
  70. 70.
    Crippen, G. M. (1996) Failures of inverse folding and threading with gapped alignment. Proteins 26, 167–171.PubMedCrossRefGoogle Scholar
  71. 71.
    Park, B. H., Huang, E. S., and Levitt, M. (1997) Factors affecting the ability of energy functions to discriminate correct from incorrect folds. J. Mol. Biol. 266, 831–846.PubMedCrossRefGoogle Scholar
  72. 72.
    Altschul, S. F., Boguski, M. S., Gish, W., and Wootton, J. C. (1994) Issues in searching molecular sequence databases. Nat. Genet. 6, 119–129.PubMedCrossRefGoogle Scholar
  73. 73.
    Altschul, S. F. and Gish, W. (1996) Local alignment statistics. Methods Enzymol. 266, 460–480.PubMedCrossRefGoogle Scholar
  74. 74.
    Karlin, S. and Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268.PubMedCrossRefGoogle Scholar
  75. 75.
    Pearson, W. R. (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Mott, R. (2000) Accurate formula for p-values of gapped local sequence and profile alignments. J. Mol. Biol. 300, 649–659.PubMedCrossRefGoogle Scholar
  77. 77.
    Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., and Lengauer, T. (2002) Confidence measures for protein fold recognition. Bioinformatics 18, 802–812.PubMedCrossRefGoogle Scholar
  78. 78.
    Jones, D. T. (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797–815.PubMedCrossRefGoogle Scholar
  79. 79.
    Juan, D., Grana, O., Pazos, F., Fariselli, P., Casadio, R., and Valencia, A. (2003) A neural network approach to evaluate fold recognition results. Proteins 50, 600–608.PubMedCrossRefGoogle Scholar
  80. 80.
    Xu, Y., Xu, D., and Olman, V. (2002) A practical method for interpretation of threading scores: an application of neural network. Stat. Sin. 12, 159–177.Google Scholar
  81. 81.
    McGuffin, L. J. and Jones, D. T. (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881.PubMedCrossRefGoogle Scholar
  82. 82.
    Karplus, K., Sjolander, K., Barrett, C., et al. (1997) Predicting protein structure using hidden Markov models. Proteins, 134–139.Google Scholar
  83. 83.
    Karplus, K., Barrett, C., and Hughey, R. (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.PubMedCrossRefGoogle Scholar
  84. 84.
    Karplus, K., Barrett, C., Cline, M., Diekhans, M., Grate, L., and Hughey, R. (1999) Predicting protein structure using only sequence information. Proteins, 121–125.Google Scholar
  85. 85.
    Panchenko, A. R., Marchler-Bauer, A., and Bryant, S. H. (2000) Combination of threading potentials and sequence profiles improves fold recognition. J. Mol. Biol. 296, 1319–1331.PubMedCrossRefGoogle Scholar
  86. 86.
    Russell, A. and Torda, A. E. (2002) Protein sequence threading-averaging over structures. Proteins 47, 496–505.PubMedCrossRefGoogle Scholar
  87. 87.
    Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520.PubMedCrossRefGoogle Scholar
  88. 88.
    Fischer, D. and Eisenberg, D. (1996) Protein fold recognition using sequence-derived predictions. Protein Sci. 5, 947–955.PubMedCrossRefGoogle Scholar
  89. 89.
    Russell, R. B., Copley, R. R., and Barton, G. J. (1996) Protein fold recognition by mapping predicted secondary structures. J. Mol. Biol. 259, 349–365.PubMedCrossRefGoogle Scholar
  90. 90.
    Rost, B., Schneider, R., and Sander, C. (1997) Protein fold recognition by predictionbased threading. J. Mol. Biol. 270, 471–480.PubMedCrossRefGoogle Scholar
  91. 91.
    Di Francesco, V., Munson, P. J., and Garnier, J. (1999) FORESST: fold recognition from secondary structure predictions of proteins. Bioinformatics 15, 131–140.PubMedCrossRefGoogle Scholar
  92. 92.
    Ayers, D. J., Gooley, P. R., Widmer-Cooper, A., and Torda, A. E. (1999) Enhanced protein fold recognition using secondary structure information from NMR. Protein Sci. 8, 1127–1133.PubMedCrossRefGoogle Scholar
  93. 93.
    Hargbo, J. and Elofsson, A. (1999) Hidden Markov models that use predicted secondary structures for fold recognition. Proteins 36, 68–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Ota, M., Kawabata, T., Kinjo, A. R., and Nishikawa, K. (1999) Cooperative approach for the protein fold recognition. Proteins, 126–132.Google Scholar
  95. 95.
    Koretke, K. K., Russell, R. B., Copley, R. R., and Lupas, A. N. (1999) Fold recognition using sequence and secondary structure information. Proteins, 141–148.Google Scholar
  96. 96.
    Rost, B. and Liu, J. F. (2003) The PredictProtein server. Nucleic Acids Res. 31, 3300–3304.PubMedCrossRefGoogle Scholar
  97. 97.
    Eyrich, V. A. and Rost, B. (2003) META-PP: single interface to crucial prediction servers. Nucleic Acids Res. 31, 3308–3310.PubMedCrossRefGoogle Scholar
  98. 98.
    Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., et al. (2003) EVA: evaluation of protein structure prediction servers. Nucleic Acids Res. 31, 3311–3315.PubMedCrossRefGoogle Scholar
  99. 99.
    Kim, D., Xu, D., Guo, J. T., Ellrott, K., and Xu, Y. (2003) PROSPECT II: protein structure prediction program for genome-scale applications. Protein Eng. 16, 641–650.PubMedCrossRefGoogle Scholar
  100. 100.
    Lu, L., Lu, H., and Skolnick, J. (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49, 350–364.PubMedCrossRefGoogle Scholar
  101. 101.
    McGuffin, L. J. and Jones, D. T. (2002) Targeting novel folds for structural genomics. Proteins 48, 44–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Jones, D. T. (2001) Predicting novel protein folds by using FRAGFOLD. Proteins, 127–132.Google Scholar
  103. 103.
    Skolnick, J., Kolinski, A., Kihara, D., Betancourt, M., Rotkiewicz, P., and Boniecki, M. (2001) Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement. Proteins, 149–156.Google Scholar
  104. 104.
    Zhang, Y., Kolinski, A., and Skolnick, J. (2003) TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys. J. 85, 1145–1164.PubMedCrossRefGoogle Scholar
  105. 105.
    Kihara, D., Lu, H., Kolinski, A., and Skolnick, J. (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc. Natl. Acad. Sci. USA 98, 10,125-10,130.CrossRefGoogle Scholar
  106. 106.
    Lu, L., Arakaki, A. K., Lu, H., and Skolnick, J. (2003) Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. Genome Res. 13, 1146–1154.PubMedCrossRefGoogle Scholar
  107. 107.
    Simons, K. T., Strauss, C., and Baker, D. (2001) Prospects for ab initio protein structural genomics. J. Mol. Biol. 306, 1191–1199.PubMedCrossRefGoogle Scholar
  108. 108.
    Simons, K. T., Kooperberg, C., Huang, E., and Baker, D. (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225.PubMedCrossRefGoogle Scholar
  109. 109.
    Chivian, D., Robertson, T., Bonneau, R., and Baker, D. (2003) Ab initio methods. In: (eiBourne, P. E., and Weissig, H., eds.) Structural Bioinformatics vol. 44. Wiley-Liss, Hoboken, NJ: 547–548.Google Scholar
  110. 110.
    Bonneau, R. and Baker, D. (2001) Ab initio protein structure prediction: progress and reports. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Andrew E. Torda
    • 1
  1. 1.Zentrum fÜr Bioinformatik, University of HamburgGermany

Personalised recommendations