Fractionation of Complex Proteomes by Microscale Solution Isoelectrofocusing Using ZOOM− IEF Fractionators to Improve Protein Profiling

  • Xun Zuo
  • Ki-Boom Lee
  • David W. Speicher
Part of the Springer Protocols Handbooks book series (SPH)


All current methods for quantitatively comparing protein profiles, including twodimensional polyacrylamide gel electrophoresis (2-D PAGE) as well as non-2-D gel methods such as isotope-coded affinity tag methods (ICAT) and other liquid chromatography (LC)/ tandem mass spectrometry (MS/MS) methods, have limited resolution and modest dynamic ranges for detection (1, 2, 3, 4, 5). As a result, these proteomic methods can analyze only small portions of very complex proteomes, such as cell or tissue extracts from higher eukaryotes. One strategy to increase the proportion of complex proteomes that can be quantitatively compared by existing protein-profiling methods is to fractionate these samples into a modest number of well resolved pools prior to downstream multi-dimensional protein profiling using 2-D gels or LC/LC-MS/MS methods. Unfortunately, most protein separation methods have relatively low resolving power and often do not separate noncovalent complexes. As a result, low- to moderate-resolution fractionation methods typically result in extensive and variable cross-contamination of many proteins among multiple fractions, which makes quantitative comparisons impractical. In contrast, several recently developed, high-resolution, liquid-phase isoelectric focusing (IEF) methods can fractionate proteomes into a modest number of well-separated fractions under denaturing conditions where specific and nonspecific protein-protein interactions are minimized (6, 7, 8, 9, 10).


BioRad Laboratory Carrier Ampholyte Separation Chamber Partition Membrane Complex Proteomes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Quadroni, M. and James, P. (1999) Proteomics and automation. Electrophoresis 20, 664–677.PubMedCrossRefGoogle Scholar
  2. 2.
    Corthals, G. L., Wasinger, V. C., Hochstrasser, D. F., and Sanchez, J. (2000) The dynamic range of protein expression: A challenge for proteome research. Electrophoresis 21, 1104–1115.PubMedCrossRefGoogle Scholar
  3. 3.
    Ali-Khan, N., Zuo, X., and Speicher, D. W. (2002) Overview of proteome analysis. In: Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wingfield, P. T. (eds), Current Protocols in Protein Science. John Wiley & Sons, New York: 22.1.1–22.1.19.Google Scholar
  4. 4.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.PubMedCrossRefGoogle Scholar
  5. 5.
    Ranish, J. A., Yi, E. C., Leslie, D. M., et al. (2003) The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355.PubMedCrossRefGoogle Scholar
  6. 6.
    Zuo, X. and Speicher, D. W. (2000) A method for global analysis of complex proteomes using sample prefractionation by solution isofocusing prior to two-dimensional electrophoresis. Anal. Biochem. 284, 266–278.PubMedCrossRefGoogle Scholar
  7. 7.
    Righetti, P. G., Castagna, A., and Herbert, B. (2001) Prefractionation techniques in proteome analysis: A new approach identifies more low-abundance proteins. Anal. Chem. 73, 320–326.CrossRefGoogle Scholar
  8. 8.
    Righetti, P. G., Castagna, A. C., Herbert, B. H., Reymond, F. R., and Rossier, J. S. (2003) Prefractionation techniques in proteome analysis. Proteomics 3, 1397–1407.PubMedCrossRefGoogle Scholar
  9. 9.
    Weber, G., Grimm, D., and Bauer, J. (2000) Application of binary buffer systems to free flow cell electrophoresis. Electrophoresis 21, 325–328.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoffmann, P., Hong, J., Moritz, R. L., et al. (2001) Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 1, 807–818.PubMedCrossRefGoogle Scholar
  11. 11.
    Zuo, X., Hembach, P., Echan, L., and Speicher, D. W. (2002) Enhanced analysis of human breast cancer proteomes using micro-scale solution isoelectrofocusing combined with high resolution 1-D and 2-D gels. J, Chromatog. B 782, 253–265.CrossRefGoogle Scholar
  12. 12.
    Zuo, X., Lee, K., and Speicher, D. W. (2004) Electrophoretic prefractionation of proteomes for comprehensive analysis of proteomes. In: Speicher, D. W. (ed), Proteome Analysis: Interpreting the Genome, Elsevier Science, New York: 93–118.Google Scholar
  13. 13.
    Zuo, X., Echan, L., Hembach, P., et al. (2001). Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis 22, 1603–1615.PubMedCrossRefGoogle Scholar
  14. 14.
    Zuo, X. and Speicher, D. W. (2002). Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2, 58–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Speicher, D. W., Lee, K., Tang, H. Y., et al. (2004) Current challenges in proteomics: Mining low abundance proteins and expanding protein profiling capacities. In: Ashcroft, A. E., Brenton, A. G., and Monaghan, J. J. (eds), Advances in Mass Spectrometry, Vol. 16, McMillan, New York: 37–57.Google Scholar
  16. 16.
    Giaffreda, E., Tonani, C., and Righetti, P. G. (1993) A pH gradient simulator for electrophoretic techniques in a windows environment. J. Chromatogr. 630, 313–327.CrossRefGoogle Scholar
  17. 18.
    Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.PubMedCrossRefGoogle Scholar
  18. 19.
    Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.PubMedCrossRefGoogle Scholar
  19. 20.
    Herbert, B. R., Molloy, M. P., Walsh, B. J., Gooley, A. A., Bryson, W. G., and Williams, K. L. (1998) Improved protein solubility in 2-D electrophoresis using tributyl phosphine. Electrophoresis 19, 845–851.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Xun Zuo
    • 1
  • Ki-Boom Lee
    • 1
  • David W. Speicher
    • 1
  1. 1.The Wistar InstitutePhiladelphia

Personalised recommendations