Extraction and Solubilization of Proteins for Proteomic Studies

  • Richard M. Leimgruber
Part of the Springer Protocols Handbooks book series (SPH)


For any proteomic study involving various control and experimental specimens, several factors need to be in place. A critical one is the extraction and solubilization of all components, regardless of whether a chromatographic (1,2) or two-dimensional (2-D) gel electrophoretic fractionation (3, 4, 5, 6) is performed prior to analysis of proteins of interest by mass spectrometry of protein digests. All proteins must not only be extracted, but they must also be completely soluble, free from interacting partners (such as protein-RNA/DNA and protein-protein interactions, metabolites, and so on), and, in the case of 2-D gel electrophoresis, they must remain soluble as they approach their isoelectric points. The solubilization process should extract all classes of proteins reproducibly, such that statistically significant quantitative data can be obtained and correlated with experimental perturbations and the resulting biological responses.


Sodium Dodecyl Sulfate Bromphenol Blue Linear Ramp Carrier Ampholyte Zwitterionic Detergent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotech. 17, 994–999.CrossRefGoogle Scholar
  2. 2.
    Patterson, S. D. and Aebersold, R. H. (2003) Proteomics: The first decade and beyond. Nature Genetics 33, 311–323.PubMedCrossRefGoogle Scholar
  3. 3.
    Garrels, J. (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254, 7961–7977.PubMedGoogle Scholar
  4. 4.
    Gorg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.PubMedCrossRefGoogle Scholar
  5. 5.
    Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fash-ioned, but it still climbs up the mountains. Proteomics 2, 3–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Lefkowits, I., Kettman, J. R., and Frey, J. R. (2000) Global analysis of gene expression in cells of the immune system. I. Analytical limitations in obtaining information on polypep-tides in two-dimensional gel spots. Electrophoresis 21, 2688–2693.CrossRefGoogle Scholar
  7. 7.
    Herbert, B. (1999) Advances in protein solubilization for two-dimensional electrophore-sis. Electrophoresis 20, 660–663.PubMedCrossRefGoogle Scholar
  8. 8.
    Molloy, M.P. (2000) Two-dimensional electrophoresis on membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Rabilloud, T. (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17, 813–829.PubMedCrossRefGoogle Scholar
  10. 10.
    Rabilloud, T. (1999) Solubilization of proteins in 2-D electrophoresis: An outline. Methods Mol. Biol. 112 2-D Proteome Analysis Protocols (Ed. Link, A. J.), 9–19.Google Scholar
  11. 11.
    Rabilloud, T., Adessi, C., Girauddel, A., and Lunardi, J. (1997) Improvement of the solu-bilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.PubMedCrossRefGoogle Scholar
  12. 12.
    Kersten, B., Burkle, L., Kuhn, E. J., et al. (2002) Large-scale plant proteomics. Plant Mol. Biol. 48, 133–141.PubMedCrossRefGoogle Scholar
  13. 13.
    Rabilloud, T., Blisnick, T., Heller, M., et al. (1999) Analysis of membrane proteins by two-dimensional electrophoresis: Comparison of the proteins extracted from normal or Plasmodium falciparum infected erythrocyte ghosts. Electrophoresis 20, 3603–3610.PubMedCrossRefGoogle Scholar
  14. 14.
    Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.PubMedCrossRefGoogle Scholar
  15. 15.
    Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070.PubMedCrossRefGoogle Scholar
  16. 16.
    Tastet, C., Charmont, S., Chevallet, M., Luche, S., and Rabilloud, T. (2003) Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimen-sional electrophoresis. Proteomics 3, 111–121.PubMedCrossRefGoogle Scholar
  17. 17.
    Leimgruber, R. M., Malone, J. P., Radabaugh, M. R., LaPorte, M. L., Violand, B. N., and Monahan, J. (2002) Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics 2, 135–144.PubMedCrossRefGoogle Scholar
  18. 18.
    Molloy, M. P. and VanBogelen, R. A. (2003) Exploring the proteome: Reviving emphasis on quantitative profiling. Proteomics 3, 1833–1834.PubMedCrossRefGoogle Scholar
  19. 19.
    Molloy, M. P., Brzezinski, E. E., Hang, J., McDowell, M.T., and VanBogelen, R. A. (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3, 1912–1919.PubMedCrossRefGoogle Scholar
  20. 20.
    Hille, J. M., Freed, A. L., and Watzig, H. (2001) Possibilities to improve automation, speed and precision of proteome analysis: A comparison of two-dimensional electrophore-sis and alternatives. Electrophoresis 22, 4035–4052.PubMedCrossRefGoogle Scholar
  21. 21.
    Somiari, R. I., Sullivan, A., Russell, S., et al. (2003) High-throughput proteomic analysis of human infiltrating ductal carcinoma of breast. Proteomics 3, 1863–1873.PubMedCrossRefGoogle Scholar
  22. 22.
    Decker, E. D., Zhang, Y., Cocklin, R. R., Witzmann, F. A., and Wang, F. (2003) Proteomic analysis of differential protein expression induced by ultraviolet light radiation in HeLa cells. Proteomics 3, 2019–2027.PubMedCrossRefGoogle Scholar
  23. 23.
    Thome-Kromer, Bonk, I., Klatt, M., et al. (2003) Toward the identification of liver toxicity markers: A proteome study in human cell culture and rats. Proteomics 3, 1835–1862.CrossRefGoogle Scholar
  24. 24.
    Jang, J. H. and Hanash, S. (2003) Profiling of the cell surface proteome. Proteomics 3, 1947–1954.PubMedCrossRefGoogle Scholar
  25. 25.
    Terry, D. E. and Desiderio, D. M. (2003) Betweengel reproducibility of the human cere-brospinal fluid proteome. Proteomics 3, 1962–1979.PubMedCrossRefGoogle Scholar
  26. 26.
    Swatton, J. E., Prabakaran, S., Karp, N. A., Lilley, K. S., and Bahn, S. (2004) Protein Profiling of human post-mortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol. Psychiatry 9, 128–143.PubMedCrossRefGoogle Scholar
  27. 27.
    Tonge, R., Shaw, J., Middleton, et al. And Davison (2001) Validation and develop-ment of fluorescence two-dimensional differential gel electrophoresis proteomics tech-nology. Proteomics 1, 377–396.PubMedCrossRefGoogle Scholar
  28. 28.
    Patton, W. F. (2002) Detection technologies in proteome analysis. J. Chromatog. B 771, 3–31.CrossRefGoogle Scholar
  29. 29.
    Choi, B.-K., Cho, Y.-M., Bae, S.-H., Zoubaulis, and Paik, Y.-K. (2003) single-step perfusion chromatography with a throughput potential for enhanced peptide detection by matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 3,1955–1961.PubMedCrossRefGoogle Scholar
  30. 30.
    Raman, Cheung, A., and Marten, M. R. (2002) Quantitative comparison and evalua-tion of two commercially available, two-dimensional electrophoresis image analysis soft-ware packages, Z3 and Melanie. Electrophoresis 23, 2194–2202.CrossRefGoogle Scholar
  31. 31.
    Rubinfeld, A., Keren-Lehrer, T., Hadas, G., and Smilansky, Z. (2003) Hierarchical analysis of large-scale two-dimensional gel electrophoresis experiments. Proteomics 3,1930–1935.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosengren, A. T., Salmi, J. M., Aittokallio, T., et al. (2003) Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis images. Proteomics 3, 1936–1946.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, N. L. and Anderson, N. G. (2002) The human plasma proteome: History, char-acter and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopez, M., Lopez, M. F., Kristal, B. S., et al. (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21, 3427–3440.PubMedCrossRefGoogle Scholar
  35. 35.
    Corthals, G. L., Molloy, M. P., Herbert, B. R., Williams, K. L., and Gooley, A. A. (1997) Prefractionation of protein samples prior to two-dimensional electrophoresis. Electro-phoresis 18,317–324.CrossRefGoogle Scholar
  36. 36.
    Hamler, R., Zhu, K., Buchanan, N. S., et al. (2004) A two-dimensional liquid-phase sepa-ration method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification. Proteomics 4, 562–577.PubMedCrossRefGoogle Scholar
  37. 37.
    Klose, J. (1999) Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis. Methods Enzymol. 112, 67–85.Google Scholar
  38. 38.
    Klose, J. (1999) Large-gel 2-D electrophoresis. In:: Link, A. (ed.), 2-D Proteome Analysis Protocols. Humana, Totowa, NJ: 147–172.Google Scholar
  39. 39.
    Rothemund, D. L., Locke, V. L., Liew, A., Thomas, T. M., Wasinger, V., and Rylatt, D. B. (2003) Depletion of the highly abundant protein albumin from human plasma using the Gradiflow. Proteomics 3, 279–287.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, W., Scali, M., Vignani, R., et al. (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering com-pounds. Electrophoresis 24, 2369–2375.PubMedCrossRefGoogle Scholar
  41. 41.
    Molloy, M. P., Herbert, Walsh, J., et al. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Elec-trophoresis 19, 837–844.CrossRefGoogle Scholar
  42. 42.
    Molloy, M., Herbert, R., Williams, K. L., and Gooley, A. A. (1999) Extraction of Escherichia coli proteins with organic solvents prior to two-dimensional electrophoresis. Electrophoresis 20, 701–704.PubMedCrossRefGoogle Scholar
  43. 43.
    Pieper R., Su, Q., Gatlin, L., Huang, S.-T., Anderson, N. L., and Steiner, S. (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3,422–432.PubMedCrossRefGoogle Scholar
  44. 44.
    Pieper, R., Gatlin, L., Makusky, A. J., et al. (2003) The human serum proteome: dis-play of nearly 3700 chromatographically separated spots on two-dimensional electro-phoresis gels and identification of 325 distinct proteins. Proteomics 3, 1345–1364.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang, Y. Y., Cheng, P., and Chan, D. W. (2003) A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 3, 243–248.PubMedCrossRefGoogle Scholar
  46. 46.
    Ahmed, N., Barker, G., Oliva, k., et al. (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3, 1980–1987.PubMedCrossRefGoogle Scholar
  47. 47.
    Haney, P. J., Draveling, C., Durski W., Romanowich, K., and Qoronfleh, M. W. (2003) SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications. Protein Exp. Purif. 28, 270–279.CrossRefGoogle Scholar
  48. 48.
    Gygi, S. P., Han, D. K., Gingras, A. C., Sonenberg, N., and Aebersold, R. (1999) Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis 20, 310–319.PubMedCrossRefGoogle Scholar
  49. 49.
    Smolka, M., Zhou, H., and Aebersold, R. (2002) Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling and mass spectrom-etry. Mol. Cell. Proteomics 1, 19–29.PubMedCrossRefGoogle Scholar
  50. 50.
    Liotta, L. A., Ferrarri, M., and Petricoin, E. (2003) Written in blood. Nature 425, 905.Google Scholar
  51. 51.
    Mehta, A. I., Ross, S., Lowenthal, M. S., et al. (2003–2004) Biomarker amplification by serum carrier protein binding. Disease Markers 19, 1–10.Google Scholar
  52. 52.
    Berman, D. M., Shih, I.-M., Burke, L. A., et al. (2004) Profiling the activity of G proteins in patient-derived tissues by rapid affinity-capture of signal transduction proteins (GRASP). Proteomics 4, 812–818.PubMedCrossRefGoogle Scholar
  53. 53.
    Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.PubMedCrossRefGoogle Scholar
  54. 54.
    Rabilloud, T. (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19, 758–760.PubMedCrossRefGoogle Scholar
  55. 55.
    Luche, S., Santoni, V., and Rabilloud, T. (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3, 249–253.PubMedCrossRefGoogle Scholar
  56. 56.
    Lanne, Potthast, F., Hogland, A., et al. (2001) Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics 1, 819-828.Google Scholar
  57. 57.
    Giavalalisco, P., Nordhoff, E., Lehrach, H., Gobom, J., and Klose, J. (2003) Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis 24, 207–216.CrossRefGoogle Scholar
  58. 58.
    Henningsen, R., Gale, B. L., Straub, K. M., and DeNagel, D. (2002) Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2, 1479–1488.PubMedCrossRefGoogle Scholar
  59. 59.
    Gall, A.-L., Ruff, M., and Moras, M. (2002) The dual role of CHAPS in the crystallization of stromelysin-3 catalytic domain. Acta Cryst. D59, 603–606.Google Scholar
  60. 60.
    Schuck, S., Honsho, M., Ekroos, Shevchenko, A., and Simons, K. (2003) Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800.PubMedCrossRefGoogle Scholar
  61. 61.
    Umbreit, J. N. and Strominger, J. L. (1973) Relation of detergent HLB number to solubi-lization and stabilization of D-alanine carboxypeptidase from Bacillus subtilis membranes. Proc. Natl. Acad. Sci. USA 70, 2997–3001.PubMedCrossRefGoogle Scholar
  62. 62.
    Duval-Terrie, C., Cosette, P., Molle, G., Muller, G., and De, E. (2003) Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization. Protein Science 12, 681–689.PubMedCrossRefGoogle Scholar
  63. 63.
    Stevens, S. M., Jr., Zharikova, A. D., and Prokai, L. (2003) Proteomic analysis of the synaptic plasma membrane fraction isolated form rat forebrain. Mol. Brain Res. 117, 116–128.PubMedCrossRefGoogle Scholar
  64. 64.
    Seigneurin-Berny, D., Rolland N., Garin, J., and Joyard, J. (1999) Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J. 19, 217–228.PubMedCrossRefGoogle Scholar
  65. 65.
    Santoni, V., Kiefer, S., Desclaux, D., Masson, F., and Rabilloud, T. (2000) Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21, 3329–3344.PubMedCrossRefGoogle Scholar
  66. 66.
    Molloy, M., Phadke, N. D., Maddock, J. R., and Andrews, P. (2001) Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22, 1686–1696.PubMedCrossRefGoogle Scholar
  67. 67.
    Hauser, H. (2000) Short-chain phospholipids as detergents. Biochim. Biophys. Acta 1508, 164–181.PubMedCrossRefGoogle Scholar
  68. 68.
    Le Maire, M., Champeil, P., and Moller, J. V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111.PubMedCrossRefGoogle Scholar
  69. 69.
    Blonder J., Goshe, M. Moore, R. J., et al. (2002) Enrichment of integral membrane proteins for proteomic analyses using liquid chromatography-tandem mass spectrometry. J. Proteome Res. 1, 351–360.PubMedCrossRefGoogle Scholar
  70. 70.
    Qoronfleh, M. W., Benton, Ignacio, R., and Kaboord, B. (2003) Selective enrichment of membrane proteins by partition phase separation for proteomic studies. J. Biomed. Biotechnol. 4, 249–255.CrossRefGoogle Scholar
  71. 71.
    Dry, I. B. and Robinson, S. P. (1994) Molecular cloning and characterization of grape berry polyphenol oxidase. Plant Mol. Biol. 26, 495–502.PubMedCrossRefGoogle Scholar
  72. 72.
    Baxter, N. J., Lilley, T. H., Haslam, E., and Williamson, M. P.(1997) Multiple interac-tions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36, 5566–5577.PubMedCrossRefGoogle Scholar
  73. 73.
    Veljovic-Jovanovic, S., Noctor, G., and Foyer, H. (2003) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507.CrossRefGoogle Scholar
  74. 74.
    Molina, M. C., Crespo, A., Vicente, C., and Elix, J. A. (2003) Differences in the compo-sition of phenolics and fatty acids of cultured mycobiont and thallus of Physconia distorta. Plant Physiol. Biochem. 41, 175–180.CrossRefGoogle Scholar
  75. 75.
    Davidsen, N. B. (1995) Two-dimensional electrophoresis of acidic proteins isolated from ozone-stressed Norway spruce needles (Picea abies L. Karst): Separation method and image processing. Electrophoresis 16, 1305–1311.PubMedCrossRefGoogle Scholar
  76. 76.
    Koonjul, P. K., Brandt, W. F., Farrant, J. M., and Lindsey, G. G. (1999) Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res. 27, 915–916.PubMedCrossRefGoogle Scholar
  77. 77.
    Hoving, S., Gerrits, B, Voshol, H., Muller, D., Roberts, R. C., and van Oostrum, J. (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2, 127–134.Google Scholar
  78. 78.
    Herbert, R., Molloy, M. P., Gooley, A. A., Walsh B. J., Bryson, W. G., and Willaims, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845–851.PubMedCrossRefGoogle Scholar
  79. 79.
    Luche, S., Diemer, H., Tastet, C. et al. (2004) About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis. Proteomics 4, 551–561.PubMedCrossRefGoogle Scholar
  80. 80.
    Santoni, V., Rabilloud, T., Doumas, P., et al. Towards the recovery of hydrophobic pro-teins on two-dimensional gels. Electrophoresis 20, 705–711.Google Scholar
  81. 81.
    Santoni, V., Doumas, P., Rouquie, D., Mansion, M., Rabilloud, T., and Rossignol, M. (1999) Large Scale characterization of plant plasma membrane proteins. Biochimie 81, 655–661.PubMedCrossRefGoogle Scholar
  82. 82.
    Kamo, M., Kawakami, T., Miyatake, N., and Tsugita, A. (1995) Separation and character-ization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16, 423–430.PubMedCrossRefGoogle Scholar
  83. 83.
    Rouquie, D., Peltier, J. Marquis-Mansion, M., Tournaire, Doumas, P., and Rossingnol, M. (1997) Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing. Electrophoresis 18, 654–660.PubMedCrossRefGoogle Scholar
  84. 84.
    Tsugita, A. and Kamo, M. (1999) N-terminal amino acid sequencing of 2-DE spots. Methods Enzymol. 112, 95–97.Google Scholar
  85. 85.
    Porubleva, L., Van der Veldin, K., Kothari, S., Livier, D. J., and Chitnis, P. R. (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22, 1724–1738.PubMedCrossRefGoogle Scholar
  86. 86.
    Gegenheimer, P. (1990) Preparation of extracts from plants. Methods Enzymol. 182,174–193.PubMedCrossRefGoogle Scholar
  87. 87.
    Bak-Jensen, K. S., Laugesen, S., Roepstorff, P., and Svensson, B. (2004) Two-dimensional gel electrophoresis pattern (pH 6-11) and identification of water-soluble barley seed and malt proteins by mass spectrometry. Proteomics 4, 728–742.PubMedCrossRefGoogle Scholar
  88. 88.
    Damerval, C., de Vienne, D., Zivy, M., and Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54.CrossRefGoogle Scholar
  89. 89.
    Alban, A., David, S. O., Bjorkesten, L., et al. (2003) A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Yan, J. X., Devenish, A. T., Wait, R., Stone, T., Lewis, S., and Fowler, S. (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682–1698.Google Scholar
  91. 91.
    Ruepp, S. U., Tonge, R. P., Shaw, J., Wallis, N., and Pognan, F. (2002) Genomics and proteomics analysis of acetoaminophen toxicity in mouse liver. Toxicological Sciences 65, 135–150.PubMedCrossRefGoogle Scholar
  92. 92.
    Kleno, T. G., Leonardsen, L. R., Kjeldal, H. O., Laursen, S. M., Jensen, O. N., and Baunsgaard, D. (2004)Mechanisms of hydrazine toxicity in rat liver investigated by proteomics and multivariate data analysis. Proteomics B 4, 868–880.CrossRefGoogle Scholar
  93. 93.
    Von Eggling, F., Gawriljuk, A., Fiedler, W., et al. (2001) Fluorescent dual colour 2D-protein gel electrophoresis for rapid detection of differences in protein pattern with stan-dard image analysis software. Int. J. Mol. Med. 8, 373–377.Google Scholar
  94. 94.
    Tyagarajan, K, Pretzer, E., and Wiktorowicz, J. E. (2003) Thiolreactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24, 2348–2358.PubMedCrossRefGoogle Scholar
  95. 95.
    Rekhter, M. D. and Chen, J. (2001) Molecular analysis of complex tissues is facilitated by laser capture microdissection: critical role of upstream processing. Cell. Biochem. Biophys. 35, 103–113.PubMedCrossRefGoogle Scholar
  96. 96.
    Banks, R. E., Dunn, M. J., Forbes, M. A., et al. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-preliminary findings. Electrophoresis 20, 689–700.PubMedCrossRefGoogle Scholar
  97. 97.
    Craven, R. A. and Banks, R. E. (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1, 1200–1204.PubMedCrossRefGoogle Scholar
  98. 98.
    Jain, K. K., (2002) Recent advances in oncoproteomics. Curr. Opin. Mol. Thr. 4, 203–209.Google Scholar
  99. 99.
    Ornstein, D. K., Gillespie, J. W., Paweletz, P., et al. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vivo prostrate cell lines. Electrophoresis 21, 2235–2242.PubMedCrossRefGoogle Scholar
  100. 100.
    Wu, S.-L., Hancock, W. S., Goodrich, G. G., and Kunitake, S. T. (2003) An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3, 1037–1046.PubMedCrossRefGoogle Scholar
  101. 101.
    Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., and Gutstein, H. B. (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610–615.PubMedCrossRefGoogle Scholar
  102. 102.
    Nakazono, M., Qiu, F., Borsuk, L. A., and Schnable, P. S. (2003) Laser-capture microdissection, a toll for the global analysis of gene expression in specific plant types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583–596.PubMedCrossRefGoogle Scholar
  103. 103.
    Malone, J. P., Radabaugh, M. R., Leimgruber, R. M., and Gerstenecker, G. S. (2001) Practical aspects of fluorescent staining for proteomic applications. Electrophoresis 22, 919–932.PubMedCrossRefGoogle Scholar
  104. 104.
    Ruebelt, M. C., Lipp, M., Jany, Kl.-D., et al. (2003) Novel Foods-Safety Assessment: Method Development for Proteome Analysis of Arabidopsis Seeds Produced by Different Ecotypes (Accessions) and by Transgenic Events, Proceedings EURO FOOD CHEMXII, Strategies for Safe Food: Challenges in Organization and Communication, 24–26 September 2003, Brugge, Belgium, 189–192, ISBN number 90-804957-2-7.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Richard M. Leimgruber
    • 1
  1. 1.PGRD-World Wide Safety Sciences Pfizer, Inc.

Personalised recommendations