Gene Therapy

Methods and Application
  • Stella B. Somiari
Part of the Springer Protocols Handbooks book series (SPH)


Gene therapy represents a set of approaches to the treatment of diseases based on the transfer of genetic material (DNA) into an individual (or animal) and is defined as the use of nucleic acid transfer, either RNA or DNA, to treat or prevent a disease 1, 2, 3). The process involves a group of technologies that enable the intentional transfer of specific exogenous genetic information into cells and the application of these technologies for pharmaceutical development (4). The gene is delivered either by direct administration of a gene-containing virus or DNA to blood or tissue or indirectly through the introduction of cells manipulated in the laboratory to harbor foreign DNA. The idea behind this technology is to treat disease by the administration of DNA (rather than a drug), which will produce an appropriate amount of gene product (usually a protein) to correct the condition. In this process, only the somatic cells and not the germ cells (eggs and sperms) are the target; therefore, such gene transfer affects only the treated individual and not the offspring. In a broad sense therefore, gene therapy can be viewed as a natural progression in the application of biomedical science to medicine. It can be employed for the correction of an underlying pathophysiological condition and can offer a one-time cure for inherited disorders for which current therapeutic approaches are ineffective or where prospective treatment appear exceedingly low.


Gene Therapy Gene Delivery Cystic Fibrosis Transmembrane Conductance Regulator Pulse Electric Field Cationic Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Crystal, R. G. (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270, 404–410.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller, A. D. (1992) Human gene therapy comes of age. Nature 357, 455–460.PubMedCrossRefGoogle Scholar
  3. 3.
    Mulligan, R. C. (1993) The basic science of gene therapy. Science 260, 926–932.PubMedCrossRefGoogle Scholar
  4. 4.
    Malone, E. W. (1999) Present and future status of gene therapy, in Advanced Gene Delivery (Rolland, A. ed.), Harwood Academic, London.Google Scholar
  5. 5.
    Schoefield, J. P. and Caskey, C. T. (1995) Non-viral approaches to gene therapy. Br. Med. Bull. 51(1), 56–71.Google Scholar
  6. 6.
    Arbones, M. L., Austin, H. A., Capon, D. J., and Greenburg, G. (1994) Gene targeting in normal somatic cells: inactivation of the interferon-γ-receptor in myoblasts. Nature Genet. 6, 90–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorin, J. R., Dickinson, P., Alton, E. W. F. W., et al (1992) Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215.PubMedCrossRefGoogle Scholar
  8. 8.
    Huxley, C. (1994) Mammalian artificial chromosomes: a new tool for gene transfer. Gene Ther. 1, 7–12.PubMedGoogle Scholar
  9. 9.
    Orkins, S. H. and Motulsky, A. G. (1995) Report and recommendations of the panel to assess the NIH investigation in research on gene therapy.
  10. 10.
    Wang, A. Y., Peng, P. D., Ehrhardt, A., Storm, T. A., and Kay, M. (2004) Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum. Gene Ther. 15, 405–413.PubMedCrossRefGoogle Scholar
  11. 11.
    Breyer, B., Jiang, W., Cheng, H., et al. (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr. Gene Ther. 1, 149–162.PubMedCrossRefGoogle Scholar
  12. 12.
    Guild, B. C., Finer, M. H., Housman, D. E., and Mulligan, R. C. (1988) Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J. Virol. 62, 3795–3801.PubMedGoogle Scholar
  13. 13.
    Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.PubMedCrossRefGoogle Scholar
  14. 14.
    Robbins, P. D. and Ghivizzani, S. C. (1998) Viral vectors for gene therapy. Pharmacol. Ther. 80(1), 35–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Kay, A. M., Liu, D., and Hoogerbrugge, M. (1997) Gene Therapy. Proc. Natl. Acad. Sci. USA 94, 12,744–12,746.PubMedCrossRefGoogle Scholar
  16. 16.
    Duke University Institutional Biosafety Committee (1995) Retrovirus Vector Guidelines.
  17. 17.
    Graham, F. L. and Prevec, L. (1995) Methods for construction of adenovirus vectors. Mol. Biotechnol. 3, 207–220.PubMedCrossRefGoogle Scholar
  18. 18.
    Wivel, N. A. and Wilson, J. M. (1998) Methods of gene delivery. Gene Ther. 12(3), 483–499.Google Scholar
  19. 19.
    Yang, Y., Haecker, S. E., Su, Q., and Wilson, J. (1996) Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Mol. Genet. 5(11), 1703–1712.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, Y. and Wilson, J. M. (1995) Clearance of adenovirus-infected hepatocytes by MHC class Irestricted CD4+ CTLs in vivo. Immunology 155(5), 2564–2570.Google Scholar
  21. 21.
    Mack, C. A., Song, W. R., Carpenter, H., et al. (1997) Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum. Gene Ther. 8, 99–109.PubMedCrossRefGoogle Scholar
  22. 22.
    Stilwel, J. L., McCarty, D. M., Negishi, A., Superfine, R., and Samulski, R. J. (2003) Development and characterization of novel empty capsids and their impact on cellular gene expression. J. Virol. 77(23), 12,881.Google Scholar
  23. 23.
    Gao, G., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adenoassociated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad Sci USA 99, 11,854–11,859.PubMedCrossRefGoogle Scholar
  24. 24.
    Grimm, D. and Kay, M. A. (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors from human gene therapy. Curr-Gene Ther. 3, 281–304.PubMedCrossRefGoogle Scholar
  25. 25.
    Flotte, T., Agarwal, A., Wang, J., et al. (2001) Efficient ex vivo transduction of pancreatic islet cells with recombinant adeno-associated virus vectors. Diabetes 50, 515–552.PubMedCrossRefGoogle Scholar
  26. 26.
    McCart, J. A., Puhlmann, M., Lee, J., et al. (2000) Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther. 7, 1217–1223.PubMedCrossRefGoogle Scholar
  27. 27.
    Hu, Y., Lee, J., McCart, J. A., et al. (2001) Yaba-like disease virus: an alternative replicating poxvirus vector for cancer gene therapy. J. Virol. 75(21), 10,300–10,308.PubMedCrossRefGoogle Scholar
  28. 28.
    Ribas, A., Butterfield, L. H., and Economou, J. S. (2000) Genetic immunotherapy for cancer. Oncologist 5, 87–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Springer, C. J. and Niculescu-Duvaz, I. (2000) Prodrug-activating systems in suicide gene therapy. J. Clin. Invest. 105, 1161–1167.PubMedCrossRefGoogle Scholar
  30. 30.
    Xu G. and McLeod H. L. (2001) Strategies for enzyme/prodrug cancer therapy. Clinical Cancer Research 7, 3314–3324.PubMedGoogle Scholar
  31. 31.
    Wolff, J. A., Malone, R. W., Williams P., et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu, F., Liang, K. W., and Huang, L. (2001) Systemic administration of naked DNA: gene transfer to skeletal muscle. Mol. Intervent. 3, 168–172.Google Scholar
  33. 33.
    Marshall, D. J. and Leiden, J. M. (1998) Recent advances in skeletal-muscle-based gene therapy. Curr. Opin. Genet. Dev. 8, 360–365.PubMedCrossRefGoogle Scholar
  34. 34.
    Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P. and Jani, A. (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1(6), 363–369.PubMedCrossRefGoogle Scholar
  35. 35.
    Doh, S., G., Vahlsing, H. L., Hartikka, J., Liang, X., and Manthorpe, M. (1997) Spatial-temporal patterns of genes expression in mouse skeletal muscle after injection of lacZ plasmid DNA. Gene Ther. 4(7), 648–663.PubMedCrossRefGoogle Scholar
  36. 36.
    Herweijer, H. and Wolff, J. A. (2003) Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 10, 453–458.PubMedCrossRefGoogle Scholar
  37. 37.
    Eastman, S. J., et al., (2002) Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum. Gene Ther. 13, 2065–2077.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang, G., Budker, V., Williams, P., Subbotin, V., and Wolff J. A. (2001) Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum. Gene Ther. 12, 427–438.PubMedCrossRefGoogle Scholar
  39. 39.
    McKay, M. J. and Gaballa, M. A. (2001) Gene transfer therapy in vascular disease. Cardiovasc. Drug Rev. 19(3), 245–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams, R. S., Johnston, S. A., Riedy, M., DeVit, J. M., McElligott, S. G., Sanford, J. C. (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 88, 2726–2730.PubMedCrossRefGoogle Scholar
  41. 41.
    Donnelly, J. J., Ulmer, J. B., and Liu, M. A. (1998) DNA vaccines. Dev. Biol. Stand. 95, 43–53.PubMedGoogle Scholar
  42. 42.
    Sato, Y., Roman, M., Tighe, H, et al. (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273(5273), 352–354.PubMedCrossRefGoogle Scholar
  43. 43.
    Hanlon, L. and Argyle, D. J. (2001) The science of DNA vaccination. Infect. Dis. Rev. 3(1), 2–12.Google Scholar
  44. 44.
    Felgner, P. L., Gadek, T. R., Holm M., et al. (1987) Lipofectin: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.PubMedCrossRefGoogle Scholar
  45. 45.
    Nabel G. J., Nabel E. G., Yang Z. Y., et al. (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11307–11311.PubMedCrossRefGoogle Scholar
  46. 46.
    Plank, C., Mechtler, K., Szoka, F. C., and Wagner, E. (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7, 1437–1446.PubMedCrossRefGoogle Scholar
  47. 47.
    Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., and Welsh, M. J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18,997–19,007.PubMedCrossRefGoogle Scholar
  48. 48.
    Pedroso de Lima, M. C., Neves, S., Filipe, A., Duzgunes, N., and Simoes, S. (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr. Med. Chem. 10(14), 1221–1231.CrossRefGoogle Scholar
  49. 49.
    Carrière, M., Escriou, V., Savarin, A., and Scherman, D. (2003) Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex’s physicochemical properties. BMC Biotechnol.
  50. 50.
    Nchinda, G., Überla, K., and Zschörnig, O. (2002) Characterization of cationic lipid DNA transfection complexes differing in susceptibility to serum inhibition.
  51. 51.
    Almofti, M. R., Harashima, H., Shinohara, Y., Almofti, A., Li, W., and Kiwada, H. (2003) Lipoplex size determines lipofection efficiency with or without serum. Mol. Membr. Biol. 20(1), 35–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Caracciolo, G., Pozzi, D., Caminiti, R., and Congiu Castellano, A. (2003) Structural characterization of a new lipid/DNA complex showing selective transfection efficiency in ovarian cancer cells. Eur. Phys. J. E: Soft Matter 10(4), 331–336.PubMedCrossRefGoogle Scholar
  53. 53.
    Somiari, S., Glasspool-Malone, J., Drabick, J. J., et al. (2000) Theory and in vivo application of electroporative gene delivery. Mol. Ther. 2(3), 178–187.PubMedCrossRefGoogle Scholar
  54. 54.
    Vanbever, R., Leroy, M. A., and Preat, V. (1998) Transdermal permeation of neutral molecules by skin electroporation. J. Control. Release 54, 243–250.PubMedCrossRefGoogle Scholar
  55. 55.
    Hartika, J., Sukhu, L., Buchner, C., et al. (2001) Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol. Ther. 4, 407–415.CrossRefGoogle Scholar
  56. 56.
    Terada Ytanaka, H., Okado, T., Inoshila, S., Kuwahara, M., Akiba, T., Sasaki, S., and Marumo, F. (2001) Efficient and ligand-dependent regulated erythropoietin production by naked DNA injection and in vivo electroporation. Am. J. Kidney Dis. 38, S50–S53.CrossRefGoogle Scholar
  57. 57.
    Vilquin J. T. Kennel Pf, Paturneau-Jouas M., Chapdelaine P., Boissel N., Delaere P., Tremblay J. P., Scherman D., Fiszman M. Y. (2001) Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophyies. Gene Ther. 8, 1097–1107.PubMedCrossRefGoogle Scholar
  58. 58.
    Swisher, S. G., Roth, J. A., Nemunaitis J., et al (1999) Adenovirus-mediated p53 gene transfer in advanced non-cell lung cancer. J. Natl. Cancer Inst. 5(91), 763–771.Google Scholar
  59. 59.
    Marshall, E. (2000) Gene therapy on trial. Science 288, 951–957.PubMedCrossRefGoogle Scholar
  60. 60.
    Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 28,288(5466), 627–629.Google Scholar
  61. 61.
    Hacein-Bey-Abina,. S., Von Kalle, C., Schmidt, M., et al., (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 17,302(5644), 400–401.Google Scholar
  62. 62.
    Hyde, S. C., Southern, K. W., Gilead U., et al. (2000) Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 7, 1156–1165.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Stella B. Somiari
    • 1
  1. 1.Windber Research InstituteWinbder

Personalised recommendations