Diagnostic Applications of Protein Microarrays

  • Samir Hanash
Part of the Springer Protocols Handbooks book series (SPH)


The sequencing of the human genome has opened the door for proteomics by providing a sequence-based framework to mine the human proteome. Although the field of proteomics was initially dominated by two-dimensional gels and mass spectrometry, the current emphasis is on developing proteome-scale high-throughput methods, as exemplified by the development of protein microarrays. This chapter addesses the utility of protein microarrays for clinical applications. Additional information about protein microarrays can be found in several review articles that have been published in various journals (1, 2, 3, 4).


Chronic Lymphocytic Leukemia Experimental Autoimmune Encephalomyelitis Protein Microarrays Oral Cavity Cancer Autoantibody Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Phizicky, E., et al. (2003) Protein analysis on a proteomic scale. Nature 422(6928), 208–215.PubMedCrossRefGoogle Scholar
  2. 2.
    Cahill, D. J. and Nordhoff, E. (2003) Protein arrays and their role in proteomics. Adv. Biochem./ Eng. Biotech. 83, 177–187.Google Scholar
  3. 3.
    Liotta, L. A., et al. (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell. 3(4), 317–325.PubMedCrossRefGoogle Scholar
  4. 4.
    Cutler, P. (2003) Protein arrays: the current state of-the-art. Proteomics 3(1), 3–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Osada, M., et al. (1998) Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Med. 4, 839–843.PubMedCrossRefGoogle Scholar
  6. 6.
    Haab, B. B., Dunham, M. J. and Brown, P.O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology 2(2), RESEARCH0004.1-0004.13.Google Scholar
  7. 7.
    Steinberg, T. H., et al. (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3(7), 1128–1144.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin, K., et al. (2003) Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 7, 1244–1255.CrossRefGoogle Scholar
  9. 9.
    Pellois, J. P., et al. (2002) Individually addressable parallel peptide synthesis on microchips. Nature Biotechnol. 20(9), 922–926.CrossRefGoogle Scholar
  10. 10.
    Zhu, H., et al. (2001) Global analysis of protein activities using proteome chips. Science 293(5537), 2101–2105.PubMedCrossRefGoogle Scholar
  11. 11.
    Schweitzer, B., Predki, P., and Snyder, M. (2003) Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3(11), 2190–2199.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhu, H., et al., Analysis of yeast protein kinases using protein chips. Nature Genet. 26, 283–289.Google Scholar
  13. 13.
    Seong, S.-Y. and Choi, C.-Y. (2003) Current status of protein chip development in terms of fabrication and application. Proteomics 3(11), 2176–2189.PubMedCrossRefGoogle Scholar
  14. 14.
    Templin, M. F., et al. (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3(11), 2155–2166.PubMedCrossRefGoogle Scholar
  15. 15.
    Plant, A. L., et al. (1991) Immobilization of binding proteins on nonporous supports. Comparison of protein loading, activity, and stability. Appl. Biochem. Biotechnol. 30(1), 83–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Elia, G., et al. (2002) Affinity-capture reagents for protein arrays. Trends Biotechnol. 20(12 Suppl.), S19–S22.PubMedCrossRefGoogle Scholar
  17. 17.
    Seong, S. Y. (2002) Microimmunoassay using a protein chip: optimizing conditions for protein immobilization. Clin. Diagn. Lab. Immunol. 9(4), 927–930.PubMedGoogle Scholar
  18. 18.
    Afanassiev, V., Hanemann, V., and Wolfl, S. (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res. 28(12), E66.PubMedCrossRefGoogle Scholar
  19. 19.
    Piletsky, S., et al. (2003) Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. Biotechnol. Bioeng. 82(1), 86–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Belov, L., et al. (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483–4489.PubMedGoogle Scholar
  21. 21.
    Belov, L., et al. (2003) Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 3(11), 2147–2154.PubMedCrossRefGoogle Scholar
  22. 22.
    Knezevic, V., et al. (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1, 1271–1278.PubMedCrossRefGoogle Scholar
  23. 23.
    Schweitzer, B., et al. (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnol. 20, 359–365.CrossRefGoogle Scholar
  24. 24.
    Lizardi, P. M., et al. (1998) Mutation detection and single-molecule counting usign isothermal rolling circle amplification. Nature Genet. 19, 225–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Paweletz, C. P., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16), 1981–1989.PubMedCrossRefGoogle Scholar
  26. 26.
    Robinson, W. H., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 8(3), 295–301.PubMedCrossRefGoogle Scholar
  27. 27.
    Robinson, W. H., et al. (2003) Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nature Biotechnol. 21(9), 1033–1039.CrossRefGoogle Scholar
  28. 28.
    Madoz-Gurpide, J., et al. (2001) Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1(10), 1279–1287.PubMedCrossRefGoogle Scholar
  29. 29.
    Hanash, S. (2003) Harnessing immunity for cancer marker discovery. Nature Biotechnol. 21(1), 37–38.CrossRefGoogle Scholar
  30. 30.
    Brichory, F. M., et al. (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl. Acad. Sci. USA 98(17), 9824–9829.PubMedCrossRefGoogle Scholar
  31. 31.
    Haab, B. B. (2003) Methods and applications of antibody microarrays in cancer research. Proteomics 3(11), 2116–2122.PubMedCrossRefGoogle Scholar
  32. 32.
    Nam, M. J., et al. (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3(11), 2108–2115.PubMedCrossRefGoogle Scholar
  33. 33.
    Petricoin, E. F., et al. (2002) Clinical proteomics: translating benchside promise into bedside reality. Nature Rev. Drug Discov. 1(9), 683–695.CrossRefGoogle Scholar
  34. 34.
    Zhang, L., et al. (2002) Contribution of human alpha-dfensin 1,2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298(5595), 995–1000.PubMedCrossRefGoogle Scholar
  35. 35.
    Albert, A. S., et al. (1993) Regulation of cell cycle progression and nuclear affinity of the retinoblastoma protein by protein phosphatases. Proc. Natl. Acad. Sci. USA 90, 388–392.CrossRefGoogle Scholar
  36. 36.
    Diamandis, E. P. (2003) Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin. Chem. 49(8), 1272–1275.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Samir Hanash
    • 1
  1. 1.Fred Hutchinson Cancer Research CenterSeattle

Personalised recommendations