Flow Cytometry in the Biomedical Arena

  • James L. Weaver
  • Maryalice Stetler-Stevenson
Part of the Springer Protocols Handbooks book series (SPH)


Flow cytometry is literally measuring cells while moving in a liquid. More specifically, a suspension of single cells is labeled with one or several fluorescent labels. In the machine, the cells are constrained into single file. These cells pass through one or more laser beams to excite the fluorescent labels. The light emitted from the fluorescent labels is collected, separated, measured, and the resulting data transmitted to the computer controlling the instrument. In addition, narrow-angle and 90° light scatter from the laser beam are measured and the data are also sent to the computer. All of these values are recorded as correlated measurements for each cell separately. The data are displayed in the computer as single-parameter histograms or twoparameter plots. The software allows populations to be identified and specific subpopulations selected for further analysis. The number and fraction of cells in specific populations can be quantitated. In addition, the amount of the fluorescent label can be calibrated, and by extension, the amount of the ligand for the label can be calculated, if needed. The patterns of expression of specific cellular proteins or changes in numbers of cells in specific populations are used to contribute to diagnosis of the patient.


Flow Cytometry Hairy Cell Leukemia Fetal Hemoglobin Megakaryocytic Differentiation Reticulate Platelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shapiro, H. (2003) In Practical Flow Cytometry, 4th ed., Wiley, Hoboken, NJ, chap. 3.Google Scholar
  2. 2.
    Herzenberg, L. A., Parks, D., Sahaf, B., Perez, O., Roederer, M., and Herzenberg, L. A. (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827.PubMedGoogle Scholar
  3. 3.
    Jaffe, E. S., Harris, N. L., Stein, H., and Vardiman, J. W. (eds.) (2001) WHO Classification, Pathology and Genetics Tumors of Haematopoietic and Lymphoid Tissues, IARC, Lyon.Google Scholar
  4. 4.
    Tbakhi, A., Edinger, M., Myles, J., Pohlman, B., and Tubbs, R. R. (1996) Flow cytometric immunophenotyping of non-Hodgkin’s lymphoma and related disorders. Cytometry 25, 113–124.PubMedCrossRefGoogle Scholar
  5. 5.
    Weir, E. G. and Borowitz, M. J. (2001) Flow cytometry in the diagnosis of acute leukemia. Semin. Hematol. 38, 124–138.PubMedCrossRefGoogle Scholar
  6. 6.
    Fukushima, P. I., Nguyen, P. K., O’Grady, P., and Stetler-Stevenson, M. (1996) Flow cytometric analysis of kappa and lambda light chain expression. Commun. Clin. Cytom. 26, 243–252.CrossRefGoogle Scholar
  7. 7.
    Braylan, R. C., Benson, N. A., and Iturraspe, J. (1993) Analysis of lymphomas by flow cytometry. Current and emerging strategies. Ann. NY Acad. Sci. 677, 364–378.PubMedCrossRefGoogle Scholar
  8. 8.
    Anon. (1997). A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood 89, 3909–3918.Google Scholar
  9. 9.
    Stetler-Stevenson, M., Medeiros, L. J., and Jaffe, E. S. (1995) Immunophenotypic methods and findings in the diagnosis of lymphoproliferative diseases, in Surgical Pathology of the Lymph Nodes and Related Organs (Jaffe, E. S., ed.), WB Saunders, Philadelphia, PA, pp. 22–57,.Google Scholar
  10. 10.
    Picker, L. J., Weiss, L. M., Medeiros, L. J., Wood, G. S., and Warnke, R. A. (1987) Immunophenotypic criteria for the diagnosis of non-Hodgkin’s lymphoma. Am. J. Pathol. 128, 181–201.PubMedGoogle Scholar
  11. 11.
    Kuchnio, M., Sausville, E. A., Jaffe, E. S., et al. (1994) Flow cytometric detection of neoplastic T cells in patients with mycosis fungoides based upon levels of T-cell receptor expression. Am. J. Clin. Pathol. 102, 856–860.PubMedGoogle Scholar
  12. 12.
    Edelman, J. and Meyerson, H. J. (2000) Diminished CD3 expression is useful for detecting and enumerating Sezary cells. Am. J. Clin. Pathol. 114, 467–477.PubMedGoogle Scholar
  13. 13.
    Gorczyca, W., Weisberger, J., Liu, Z., et al. (2002). An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry (Clin. Cytom.) 50, 177–190.CrossRefGoogle Scholar
  14. 14.
    Lima, M., Almeida, J., Santos, A. H., et al. (2001) Immunophenotypic Analysis of the TCR-V repertoire in 98 persistent expansions of CD3+/TCR large granular lymphocytes. Am. J. Pathol. 159, 1861–1868.PubMedCrossRefGoogle Scholar
  15. 15.
    Weir, E. G. and Borowitz, M. J. (2001) Flow cytometry in the diagnosis of acute leukemia. Semin. Hematol. 38, 124–138.PubMedCrossRefGoogle Scholar
  16. 16.
    Borowitz, M. J., Guenther, K. L., Shults, K. E., and Stelzer, G. T. (1993) Immunophenotyping of acute leukemia by flow cytometric analysis: use of CD45 and right angle light scatter to gate on leukemic blasts in three color analysis. Am. J. Clin. Pathol. 100, 534–540.PubMedGoogle Scholar
  17. 17.
    Ranier, R. Hodges, I., and Stelzer, G. (1995) CD45 gating correates with bone marrow differential. Cytometry 22, 139–145.CrossRefGoogle Scholar
  18. 18.
    Garratty, G. and Arndt, P. A. (1999) Applications of flow cytofluorometry to red blood cell immunology. Cytometry 38, 259–267.PubMedCrossRefGoogle Scholar
  19. 19.
    Davis, B. H., Olsen, S., Bigelow, N. C., and Chen, J. C. (1998) Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 38, 749–756.PubMedCrossRefGoogle Scholar
  20. 20.
    Ault, K. A. (2001) The clinical utility of flow cytometry in the study of platelets. Semin. Hematol. 38, 160–168.Google Scholar
  21. 21.
    Davis, B. and Bigelow, N. (1999) Indirect immunoplatelet counting by flow cytometry as a reference method for platelet count calibration. Lab. Hematol. 5, 15–21.Google Scholar
  22. 22.
    Tschoepe, D., Schultheiss, H. P., Kolarov, P., et al. (1993) Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation 88, 37–42.PubMedGoogle Scholar
  23. 23.
    His, E. D. (2000) Paroxysmal nocturnal hemaglobinuria testing by flow cytometry-evaluation of the REDQUANT and CELLQUANT kits. AJCP 114, 798–806.Google Scholar
  24. 24.
    Hernandez-Campo, P. M., Martin-Ayuso, M., Almeida, J., Lopez, A., and Orfao, A. (2002) Comparative analysis of different flow cytometry-based immunophenotypic methods for the analysis of CD59 and CD55 expression on major peripheral blood cell subsets. Cytometry 50, 191–201.PubMedCrossRefGoogle Scholar
  25. 25.
    Horsburgh, T., Martin, S., and Robson, A. J. (2000) The application of flow cytometry to histocompatibility testing. Transplant Immunology 8, 3–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Kerman, R. H., Gebel, H., Bray, R., et al. (2002) HLA antibody and donor reactivity define patients at risk for rejection or graft loss. Am. J. Transplant. 2, 258.Google Scholar
  27. 27.
    Bryan, C. F., McDonald, S. B., Baier, K. A., et al. (2002) Flow cytometry beads rather than the antihuman globulin method should be used to detect HLA Class I IgG antibodies (PRA) in cadaveric renal regraft candidates. Clin. Transplant. 16, 15–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Lun, A., Schmitt, M., and Renz, H. (2000) Phagocytosis and oxidative burst: reference values for flow cytometric assays independent of age. Clin. Chem. 46, 1836–1839.PubMedGoogle Scholar
  29. 29.
    Mandy, F., Nicholson, J., Autran, B., and Janossy, G. (2002) T-cell subset counting and the fight against AIDS: Reflections over a 20-year struggle. Cytometry (Clinical Cytometry) 50, 39–45.CrossRefGoogle Scholar
  30. 30.
    Fahey, J. L., Taylor, J. M. G., Manna, B., et al. (1998) Prognostic significance of plasma markers of immune activation, HIV viral load, and CD4 T-cell measurements. AIDS 12, 1581–1590.PubMedCrossRefGoogle Scholar
  31. 31.
    Giorgi, J. V., Lyles, R. H., Matud, J. L., et al. (2002) Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J. Acquired Immume Deficiency Dis. 29, 346–355.Google Scholar
  32. 32.
    Bleesing, J. J. H. (2003) Autoimmune lymphoproliferative syndrome (ALPS). Curr. Pharm. Design 9, 265–278.CrossRefGoogle Scholar
  33. 33.
    Bienvenu, J., Monneret, G., Fabien, N., and Revillard, J. P. (2000) The clinical usefulness of the measurement of cytokines. Clin. Chem. Lab. Med. 38, 267–285PubMedCrossRefGoogle Scholar
  34. 34.
    Tricot, G., Jagannath, S., Vesole, D., et al. (1995) Peripheral Blood stem cell transplants for multiple myeloma: Identification of favorable variables for rapid engraftment in 225 patients. Blood 85, 588–596.PubMedGoogle Scholar
  35. 35.
    Weaver, C. H., Hazelton, B., Birch, R., et al. (1995) An analysis of engraftement kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86, 3961–3969.PubMedGoogle Scholar
  36. 36.
    Sutherland, D. R., Keating, A., Nayar, R., Anania, S., Stewart, A. K. (1994) Sensitive detection and enumeration of CD34+ cells in peripheral blood and cord blood by flow cytometry. Exp. Hematol. 22, 1003–1010.PubMedGoogle Scholar
  37. 37.
    Gratama, J. W., Orfao, A., Barnett, D., et al. (1998) Flow cytometric enumeration of CD34(+) hematopoietic stem and progenitor cells. Cytometry 34, 128–142.PubMedCrossRefGoogle Scholar
  38. 38.
    Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., Chin-Yee, I. (1996) The ISHAGE guidelines for CD34 cell determination by flow cytometry. J. Hematother. 5, 213–226.PubMedCrossRefGoogle Scholar
  39. 39.
    Barnett, D., Granger, V., Kraan, J., et al. (2000) Reduction of intra and inter-laboratory variation in CD34 positive stem cell enumeration by the use of stable test material, standard protocols and targeted training. Br. J. Haematol. 108, 784–792.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • James L. Weaver
    • 1
  • Maryalice Stetler-Stevenson
    • 2
  1. 1.Division of Applied Pharmacology ResearchOTR, CDER, Food and Drug AdministrationSilver SpringMD
  2. 2.Laboratory of PathologyNational Cancer Institute,National Institutes of HealthBethesdaMD

Personalised recommendations