Analysis of Chromosomal Translocations

  • Andreas Hochhaus
Part of the Springer Protocols Handbooks book series (SPH)


Chromosomal translocations were the first target for the specific detection of residual tumor cells in bone marrow and peripheral blood. Some types of leukemia are regularly or generally associated with translocations. In chronic myelogenous leukemia (CML) and a proportion of patients with acute lymphoblastic leukemia (ALL), the t(9;22)(q34;q11) translocation leads to the fusion of the ABL gene with part of the BCR gene. Locating the primers such that the polymerase chain reaction (PCR) product spans the fusion point makes it possible to amplify sequences of the hybrid gene specifically (see Chapter 6). Because the breakpoints are better defined at the RNA level than at the DNA level, the primary target is the RNA, which is transcribed into cDNA by reverse transcription. (RT-PCR). In this way, a single leukemic cell can be detected from among 106 normal bone marrow or peripheral blood cells. Comparable approaches have been applied to other fusions such as the PML-RARα fusion gene in acute promyelocytic leukemia (APL). The presence of a few cells with phenotypic or genotypic features of leukemia cells after therapeutic regimens such as stem cell transplantation is know as “minimal residual disease” (MRD).


Chronic Myelogenous Leukemia Minimal Residual Disease Cytogenetic Response Chronic Myelogenous Leukemia Cell Chronic Myelogenous Leukemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wagener, C. (1997) Molecular diagnostics. J. Mol. Med. 75, 728–744.PubMedCrossRefGoogle Scholar
  2. 2.
    Rowley, J. D. (1998) The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519.PubMedCrossRefGoogle Scholar
  3. 3.
    Nowell, P. C. (2002) Progress with chronic myelogenous leukemia: a personal perspective over four decades. Annu. Rev. Med. 53, 1–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Bloomfield, C. D., Lawrence, D., Byrd, J. C., et al. (1998) Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 58, 4173–4179.PubMedGoogle Scholar
  5. 5.
    Cross, N. C. and Reiter, A. (2002) Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia 16, 1207–1212.PubMedCrossRefGoogle Scholar
  6. 6.
    Nowell, P. C. and Hungerford, D. A. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1501Google Scholar
  7. 7.
    Rowley, J. D. (1973) A new consistent chromosome abnormality in chronic myelogenous leukemia detected by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293.PubMedCrossRefGoogle Scholar
  8. 8.
    Groffen, J., Stephenson, J. R., Heisterkamp, N., de Klein, A., Bartram, C. R., and Grosveld, G. (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36, 93–99.PubMedCrossRefGoogle Scholar
  9. 9.
    Stam, K., Heisterkamp, N., Grosveld, G., et al. (1985) Evidence of a new chimeric bcrc-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313, 1429–1433.PubMedCrossRefGoogle Scholar
  10. 10.
    Hook, E. B. (1977) Exclusion of chromosomal mosaicism: tables of 90‰, 95‰, and 99‰ confidence limits and comments on use. Am. J. Hum. Genet. 29, 94–97.PubMedGoogle Scholar
  11. 11.
    Kantarjian, H. M., Dixon, D., Keating, M. J., et al. (1988) Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer 61, 1441–1446.PubMedCrossRefGoogle Scholar
  12. 12.
    Hochhaus A, Weisser A, La Rosée P, et al. (2000) Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 14, 998–1005.PubMedCrossRefGoogle Scholar
  13. 13.
    Tkachuk, D. C., Westbrook, C. A., Andreeff, M., et al. (1990) Detection of BCR-ABL fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250, 559–562.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber-Matthiesen, K., Winkemann, M., Müller-Hermelink, A., Schlegelberger, B., and Grote, W. (1992) Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to characterization of tumor cells. J. Histochem. Cytochem. 40, 171–175.PubMedGoogle Scholar
  15. 15.
    Chase, A., Grand, F., Zhang, J. G., Blackett, N., Goldman, J., and Gordon, M. (1997) Factors influencing the false positive and negative rates of BCR-ABL fluorescence in-situ hybridization. Genes Chromosomes Cancer 18, 246–253.PubMedCrossRefGoogle Scholar
  16. 16.
    Sinclair, P. B., Green, A. R., Grace, C., and Nacheva, E. P. (1997) Improved sensitivity of BCRABL detection: a triple-probe three-color fluorescence in situ hybridization system. Blood 90, 1395–1402.PubMedGoogle Scholar
  17. 17.
    Dewald, G. W., Wyatt, W. A., Juneau, A. L., et al. (1998) Highly sensitive fluorescence in situ hybridization method to detect double BCR-ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 91, 3357–3365.PubMedGoogle Scholar
  18. 18.
    Seong, D. C., Kantarjian, H. M., Ro, J. Y., et al. (1995) Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood 86, 2343–2349.PubMedGoogle Scholar
  19. 19.
    Reiter, A., Skladny, H., Hochhaus, A., et al. (1997) Molecular response of CML patients treated with interferon-monitored by quantitative Southern blot analysis. Br. J. Haematol. 97, 86–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Verschraegen, C. F., Talpaz, M., Hirsch Ginsberg, C. F., et al. (1995) Quantification of the breakpoint cluster region rearrangement for clinical monitoring in Philadelphia chromosome-positive chronic myeloid leukemia. Blood 85, 2705–2710.PubMedGoogle Scholar
  21. 21.
    Guo, J. Q., Lian, J. Y., Xian, Y. M., et al. (1994) BCR-ABL protein expression in peripheral blood cells of chronic myelogenous leukemia patients undergoing therapy. Blood 83, 3629–3637.PubMedGoogle Scholar
  22. 22.
    Morgan, G. J., Hughes, T., Janssen, J. W., et al. (1989) Polymerase chain reaction for detection of residual leukemia. Lancet 1, 928–929.PubMedCrossRefGoogle Scholar
  23. 23.
    Cross, N. C. P. (1997) Assessing residual leukemia. Baillieres Clin. Haematol. 10, 389–403.PubMedCrossRefGoogle Scholar
  24. 24.
    Cross, N. C. P., Melo, J. V., Feng, L., and Goldman, J. M. (1994) An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 8, 186–189.PubMedGoogle Scholar
  25. 25.
    Morley, A. (1998) Quantifying leukemia. N. Engl. J. Med. 339, 627–629.PubMedCrossRefGoogle Scholar
  26. 26.
    van Dongen, J. J. M., MacIntyre, E. A., Gabert, J. A., et al. (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 12, 1901–1928.CrossRefGoogle Scholar
  27. 27.
    Lin, F., van Rhee, F., Goldman, J. M., and Cross, N. C. P. (1996) Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 87, 4473–4478.PubMedGoogle Scholar
  28. 28.
    Hochhaus, A., Reiter, A., Sauβele, S., et al., for the German CML Study Group and the UK MRC CML Study Group (2000) Molecular heterogeneity in complete cytogenetic responders after interferontherapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. Blood 95, 62–66.PubMedGoogle Scholar
  29. 29.
    Biernaux, C., Loos, M., Sels, A., Huez, G., and Stryckmans, P. (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 88, 3118–3122.Google Scholar
  30. 30.
    Cross, N. C. P., Feng, L., Chase, A., Bungey, J., Hughes, T. P., and Goldman, J. M. (1993) Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82, 1929–1936.PubMedGoogle Scholar
  31. 31.
    Lin, F., Kirkland, M. A., van Rhee, F., et al. (1996) Molecular analysis of transient cytogenetic relapse after allogeneic bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant. 18, 1147–1152.PubMedGoogle Scholar
  32. 32.
    van Rhee, F., Lin, F., Cullis, J. O., et al. (1994) Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 83, 3377–3383.PubMedGoogle Scholar
  33. 33.
    Corsetti, M. T., Lerma, E., Dejana, A., et al. (1999) Quantitative competitive reverse transcriptasepolymerase chain reaction for BCR-ABL on Philadelphia-negative leukaphereses allows the selection of low-contaminated peripheral blood progenitor cells for autografting in chronic myelogenous leukemia. Leukemia 13, 999–1008.PubMedCrossRefGoogle Scholar
  34. 34.
    Preudhomme, C., Révillion, F., Merlat, A., et al. (1999) Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a’ real time’ quantitative RT-PCR assay. Leukemia 13, 957–964.PubMedCrossRefGoogle Scholar
  35. 35.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138.PubMedGoogle Scholar
  36. 36.
    Emig, M., Saussele, S., Wittor, H., et al. (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RTPCR. Leukemia 13, 1825–1832.PubMedCrossRefGoogle Scholar
  37. 37.
    Hughes, T. P., Kaeda, J., Branford, S., for the International Randomized Study of Interferon versus STI571 (IRIS) Study Group. (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed patients with chronic myeloid leukemia. N. Engl. J. Med. 349, 1421–1430.CrossRefGoogle Scholar
  38. 38.
    Müller, M. C., Gattermann, N., Lahaye, T., et al. (2003) Dynamics of BCR-ABL mRNA expression in first line therapy of chronic myelogenous leukemia patients with imatinib or interferon a/ara-C. Leukemia 17, 2392–2400.PubMedCrossRefGoogle Scholar
  39. 39.
    Schoch, C., Schnittger, S., Bursch, S., et al. (2002) Comparison of chromosome banding analysis, interphase-and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for followup in chronic myeloid leukemia: A study of 350 cases. Leukemia 16, 53–59.PubMedCrossRefGoogle Scholar
  40. 40.
    van der Velden, V. H. J., Hochhaus, A., Cazzaniga, G., Szczepanski, T., Gabert, J., and van Dongen, J. J. M. (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17, 1013–1034.PubMedCrossRefGoogle Scholar
  41. 41.
    Gabert, J., Beillard, E., van der Velden, V. H. J., et al. (2003) Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer Program. Leukemia 17, 2318–2357.PubMedCrossRefGoogle Scholar
  42. 42.
    Beillard, E., Pallisgaard, N., van der Velden, V. H. J., et al. (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)-an Europe Against Cancer Program. Leukemia 17, 2474–2486.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Andreas Hochhaus
    • 1
  1. 1.Medizinische KlinikFakultät für Klinische Medizin Mannheim der Universität HeidelbergMannheimGermany

Personalised recommendations