cDNA Microarrays

  • Phillip G. Febbo
Part of the Springer Protocols Handbooks book series (SPH)


Clinicians and scientists are limited in their ability to understand human disease and cellular biology by the technologies available to measure the state of the organism or cell. For millennia, scientists have studied human biology and disease based on anatomical observations; for centuries, decisions have been based on microscopic observations, and over the past several decades, decisions have been based on the status of specific genes associated with disease. In the mid-1990s, cDNA microarray technology emerged that simultaneously measured the expression of thousands of genes (1, 2, 3, 4, 5). These expression microarrays have rapidly evolved to cover most of the 34,000 genes in the human genome (6) and now offer clinicians and scientists an unprecedented level of detail through which they can observe human disease and cellular biology.


Acute Lymphoblastic Leukemia Cellular Biology cDNA Array Acute Myeloblastic Leukemia cDNA Microarray Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schena, M., et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470.PubMedCrossRefGoogle Scholar
  2. 2.
    Lipshutz, R.J., et al. (1995) Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 19(3), 442–447.PubMedGoogle Scholar
  3. 3.
    Chu, S., et al. (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389), 699–705.PubMedCrossRefGoogle Scholar
  4. 4.
    Wodicka, L., et al. (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15(13), 1359–1367.CrossRefGoogle Scholar
  5. 5.
    Lockhart, D.J., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14(13), 1675–1680.CrossRefGoogle Scholar
  6. 6.
    Baltimore, D. (2001) Our genome unveiled. Nature 409, 814–816.PubMedCrossRefGoogle Scholar
  7. 7.
    Hanahan, D. and Weinberg, R. A. (2000)The hallmarks of cancer. Cell 100(1), 57–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Pollack, J.R., et al. (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99(20), 12,963–12,968.PubMedCrossRefGoogle Scholar
  9. 9.
    Varambally, S., et al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907), 624–629.PubMedCrossRefGoogle Scholar
  10. 10.
    Mootha, V.K., et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34(3), 267–273.PubMedCrossRefGoogle Scholar
  11. 11.
    Crick, F. (1970) Central dogma of molecular biology. Nature 227(258), 561–563.PubMedCrossRefGoogle Scholar
  12. 12.
    Velculescu, V.E., et al. (1997) Characterization of the yeast transcriptome. Cell 88(2), 243–251.PubMedCrossRefGoogle Scholar
  13. 13.
    Velculescu, V.E., et al. (1995) Serial analysis of gene expression. Science 270(5235), 484–487.PubMedCrossRefGoogle Scholar
  14. 14.
    Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072), 967–971.PubMedCrossRefGoogle Scholar
  15. 15.
    Kerr, M.K. and Churchill, G. A. (2001) Statistical design and the analysis of gene expression microarray data. Genet. Res. 77(2), 123–128.PubMedGoogle Scholar
  16. 16.
    Churchill, G.A. (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genet. 32(Suppl.), 490–495.PubMedCrossRefGoogle Scholar
  17. 17.
    Simon, R., Radmacher, M.D. and Dobbin, K. (2002) Design of studies using DNA microarrays. Genet. Epidemiol. 23(1), 21–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Mukherjee, S., et al. (2003) Estimating dataset size requirements for classifying DNA microarray data. J. Comput. Biol. 10(2), 119–142.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Der Laan, M.J. and J. Bryan, Gene expression analysis with the parametric bootstrap. Biostatistics, 2001. 2(4): p. 445–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, I.V., et al., Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biology, 2002. 3: p. 62.1–62.12.Google Scholar
  21. 21.
    Ma, X.J., et al. (2003) Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. USA 100(10), 5974–5979.PubMedCrossRefGoogle Scholar
  22. 22.
    Golub, T.R., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537.PubMedCrossRefGoogle Scholar
  23. 23.
    Perou, C.M., et al. (2000) Molecular portraits of human breast tumours. Nature 406(6797), 747–752.PubMedCrossRefGoogle Scholar
  24. 24.
    Baugh, L.R., et al. (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29(5), E29.PubMedCrossRefGoogle Scholar
  25. 25.
    Barrett, J.C. and Kawasaki, E. S. (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov. Today 8(3), 134–141.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang, Y.H., et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systemic variation. Nucelic Acids Res. 30(4), e15.CrossRefGoogle Scholar
  27. 27.
    Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98(1), 31–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Quackenbush, J. (2002) Microarray data normalization and transformation. Nature Genet. 32(Suppl.), 496–501.PubMedCrossRefGoogle Scholar
  29. 29.
    Workman, C., et al. (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 3(9), research0048.Google Scholar
  30. 30.
    Tseng, G. C., et al. (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29(12), 2549–2557.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffmann, R., Seidl, T., and Dugas, M. (2002) Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol. 3(7), p. research0033.Google Scholar
  32. 32.
    Hautaniemi, S., et al. (2003) A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19(16): 2031–2038.PubMedCrossRefGoogle Scholar
  33. 33.
    Smyth, G. K., Yang, Y.H. and Speed, T. (2003) Statistical issues in cDNA microarray data analysis. Methods Mol. Biol. 224, 111–136.PubMedGoogle Scholar
  34. 34.
    Jenssen, T.K., et al. (2002) Analysis of repeatability in spotted cDNA microarrays. Nucleic Acids Res. 30(14), 3235–3244.PubMedCrossRefGoogle Scholar
  35. 35.
    Gollub, J., et al. (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31(1), 94–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Eisen, M.B., et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14,863–14,868.PubMedCrossRefGoogle Scholar
  37. 37.
    Tamayo, P., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96(6), 2907–2912.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhong, S., Li, C., and Wong, W. H. (2003) ChipInfo: Software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res. 31(13), 3483–3486.PubMedCrossRefGoogle Scholar
  39. 39.
    Jenssen, T.K., et al. (2001) A literature network of human genes for high-throughput analysis of gene expression. Nature Genet. 28(1), 21–28.PubMedGoogle Scholar
  40. 40.
    Butte, A.J., et al. (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. USA 97(22), 12,182–12,186.Google Scholar
  41. 41.
    Nevins, J.R., et al. (2003) Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mol. Genet. 12, (Epub 8/19/03).Google Scholar
  42. 42.
    Chuaqui, R.F., et al. (2002) Post-analysis follow-up and validation of microarray experiments. Nature Genet. bd32(Suppl.), 509–514.CrossRefGoogle Scholar
  43. 43.
    Slonim, D.K. (2002) From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32(Suppl.), 502–508.PubMedCrossRefGoogle Scholar
  44. 44.
    Dougherty, E. (2001) Small sample issues for microarray-based classification. Comp. Function. Genom. 2, 28–34.CrossRefGoogle Scholar
  45. 45.
    Kerr, M.K. and Churchill, G. A. (2001) Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA 98(16), 8961–8965.PubMedCrossRefGoogle Scholar
  46. 46.
    Azuaje, F. (2003) Genomic data sampling and its effect on classification performance assessment. BMC Bioinformatics 4(1), 5.PubMedCrossRefGoogle Scholar
  47. 47.
    Singh, D., et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209.PubMedCrossRefGoogle Scholar
  48. 48.
    Dyrskjot, L., et al. (2003) Identifying distinct classes of bladder carcinoma using microarrays. Nature Genet. 33(1), 90–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Nutt, C.L., et al. (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63(7), 1602–1607.PubMedGoogle Scholar
  50. 50.
    Pomeroy, S.L., et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870): 436–442.PubMedCrossRefGoogle Scholar
  51. 51.
    Shipp, M.A., et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med. 8(1), 68–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Stickney, H.L., et al. (2002) Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 12(12), 1929–1934.PubMedCrossRefGoogle Scholar
  53. 53.
    Brazma, A., et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet. 29(4), 365–371.PubMedCrossRefGoogle Scholar
  54. 54.
    Spellman, P.T., et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297.PubMedGoogle Scholar
  55. 55.
    Iyer, V.R., et al. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398), 83–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Le Naour, F., et al. (2001) Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276(21), 17920–17931.PubMedCrossRefGoogle Scholar
  57. 57.
    Quackenbush, J. (2003) Genomics. Microarrays-guilt by association. Science 302(5643), 240–241.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim, S.K., et al. (2001) A gene expression map for Caenorhabditis elegans. Science 293(5537), 2087–2092.PubMedCrossRefGoogle Scholar
  59. 59.
    Walhout, A.J., et al. (2002) Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr. Biol. 12(22), 1952–1958.PubMedCrossRefGoogle Scholar
  60. 60.
    White, K.P., et al. (1999) Microarray analysis of Drosophila development during metamorphosis. Science 286(5447), 2179–2184.PubMedCrossRefGoogle Scholar
  61. 61.
    Jin, W., et al. (2001) The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29(4), 389–395.PubMedCrossRefGoogle Scholar
  62. 62.
    Arbeitman, M.N., et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590), 2270–2275.PubMedCrossRefGoogle Scholar
  63. 63.
    Ton, C., et al., Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun, 2002. 296(5): p. 1134–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Stuart, J.M., et al. (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255.PubMedCrossRefGoogle Scholar
  65. 65.
    McCarroll, S.A., et al. (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nature Genet. 36(2), 197–204.PubMedCrossRefGoogle Scholar
  66. 66.
    Hughes, T.R., et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102(1), 109–126.PubMedCrossRefGoogle Scholar
  67. 67.
    Schadt, E. E., Monks, S.A., and Friend, S. H. (2003) A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans. 31(2), 437–443.PubMedCrossRefGoogle Scholar
  68. 68.
    Stegmaier, K., et al. (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36(3), 257–263.PubMedCrossRefGoogle Scholar
  69. 69.
    Yeoh, E.J., et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2), 133–143.PubMedCrossRefGoogle Scholar
  70. 70.
    Su, A.I., et al. (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 61(20), 7388–7393.PubMedGoogle Scholar
  71. 71.
    Ramaswamy, S., et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98(26), 15,149–15,154.PubMedCrossRefGoogle Scholar
  72. 72.
    Chan, W.C. and Huang, J. Z. (2001) Gene expression analysis in aggressive NHL. Ann. Hematol. 80(Suppl. 3), B38–B41.PubMedGoogle Scholar
  73. 73.
    Alizadeh, A.A., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511.PubMedCrossRefGoogle Scholar
  74. 74.
    Ono, K., et al. (2000) Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res. 60(18), 5007–5011.PubMedGoogle Scholar
  75. 75.
    Sallinen, S.L., et al. (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60(23), 6617–6622.PubMedGoogle Scholar
  76. 76.
    Lu, J., et al. (2001) Gene expression profile changes in initiation and progression of squamous cell carcinoma of esophagus. Int. J. Cancer 91(3), 288–294.PubMedCrossRefGoogle Scholar
  77. 77.
    Mori, M., et al. (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131(1 Suppl.), S39–S47.PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang, Y., et al. (2002) Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene 21(14), 2270–2282.PubMedCrossRefGoogle Scholar
  79. 79.
    Rubin, M.A., et al. (2002) Alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287(13), 1662–1670.PubMedCrossRefGoogle Scholar
  80. 80.
    Luo, J., et al. (2002) Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 62(8), 2220–2226.PubMedGoogle Scholar
  81. 81.
    Hedenfalk, I., et al. (2001) Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548.PubMedCrossRefGoogle Scholar
  82. 82.
    Garber, M.E., et al. (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA 98(24), 13,784–13,789.PubMedCrossRefGoogle Scholar
  83. 83.
    Bhattacharjee, A., et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98(24), 13,790–13,795.PubMedCrossRefGoogle Scholar
  84. 84.
    Armstrong, S.A., et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet. 30(1), 41–47.PubMedCrossRefGoogle Scholar
  85. 85.
    Yussman, M.G., et al. (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Med. 8(7), 725–730.PubMedGoogle Scholar
  86. 86.
    Heller, R.A., et al. (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94(6), 2150–2155.CrossRefGoogle Scholar
  87. 87.
    Baelde, H.J., et al. (2004) Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am. J. Kidney Dis. 43(4), 636–650.PubMedCrossRefGoogle Scholar
  88. 88.
    Whitney, L.W., et al. (1999) Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46(3), 425–428.PubMedCrossRefGoogle Scholar
  89. 89.
    Chabas, D., et al. (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294(5547), 1731–1735.PubMedCrossRefGoogle Scholar
  90. 90.
    van’t Veer, L. J., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536.CrossRefGoogle Scholar
  91. 91.
    West, M., et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA 98(20), 11,462–11,467.PubMedCrossRefGoogle Scholar
  92. 92.
    Huang, E., et al. (2003) Gene expression predictors of breast cancer outcomes. Lancet 361(9369), 1590–1596.PubMedCrossRefGoogle Scholar
  93. 93.
    van de Vijver, M. J., et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347(25), 1999–2009.CrossRefGoogle Scholar
  94. 94.
    Henshall, S.M., et al. (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res. 63(14), 4196–4203.PubMedGoogle Scholar
  95. 95.
    Li, S., et al. (2001) Comparative genome-scale analysis of gene expression profiles in T cell lymphoma cells during malignant progression using a complementary DNA microarray. Am. J. Pathol. 158(4), 1231–1237.PubMedCrossRefGoogle Scholar
  96. 96.
    Wright, G., et al. (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 100(17), 9991–9996.PubMedCrossRefGoogle Scholar
  97. 97.
    Ramaswamy, S., et al. (2003) A molecular signature of metastasis in primary solid tumors. Nature Genet. 33(1), 49–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Blaxall, B. C., et al. (2003) Differential myocardial gene expression in the development and rescue of murine heart failure. Physiol. Genom. 15(2), 105–114.Google Scholar
  99. 99.
    Ueno, S., et al. (2003) DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem. Biophys. Res. Commun. 307(4), 771–777.PubMedCrossRefGoogle Scholar
  100. 100.
    Youdim, M.B., et al. (2002) Early and late molecular events in neurodegeneration and neuroprotection in Parkinso’s disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox. Res. 4(7-8), 679–689.PubMedCrossRefGoogle Scholar
  101. 101.
    Eikmans, M., et al. (2002) RNA expression profiling as prognostic tool in renal patients: toward nephrogenomics. Kidney Int. 62(4), 1125–1135.Google Scholar
  102. 102.
    Leikauf, G.D., et al. (2002) Acute lung injury: functional genomics and genetic susceptibility. Chest 121(3 Suppl.): 70S–75S.PubMedCrossRefGoogle Scholar
  103. 103.
    Chang, J. C., et al. (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381), 362–369.PubMedCrossRefGoogle Scholar
  104. 104.
    Faneyte, I.F., et al. (2003)Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br. J. Cancer 88(3), 406–412.PubMedCrossRefGoogle Scholar
  105. 105.
    Armstrong, S.A., et al. (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3(2), 173–183.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Phillip G. Febbo
    • 1
  1. 1.Duke Institute for Genome Sciences and PolicyDuke UniversityDurham

Personalised recommendations