Single-Nucleotide Polymorphisms

Technology and Applications
  • Cyril Mamotte
  • Frank Christiansen
  • Lyle J. Palmer
Part of the Springer Protocols Handbooks book series (SPH)


The genomics revolution is transforming epidemiology, medicine, and drug discovery (1, 2, 3, 4, 5, 6, 7) and there is an ongoing refocusing of effort away from family-based linkage studies toward population-based genetic association studies for complex phenotypes (3,8, 9, 10, 11). The generation of new genomic knowledge and its integration into epidemiological and clinical research projects in industry and academia are exponentially increasing trends. The genetic basis of disease susceptibility, disease progression and severity, and response to therapy for many complex conditions has been increasingly emphasized in medical research, with the ultimate goal of improving preventive strategies, diagnostic tools, and therapies (4,5,12,13). Enormous effort in both academia and industry has been expended in genetic studies of complex human diseases over the last decade. Concomitant technical developments in molecular genetics and in the use of polymorphism directly derived from DNA sequence have occurred, and extensive catalogs of DNA sequence variants across the human genome have been constructed (14, 15, 16) (see the Appendix, p. 247). The completion of the human genome project and the application of highthroughput technologies for polymorphism detection to the investigation of complex disease genetics has created unprecedented opportunities for understanding the pathogenic basis of common human diseases (1,16).


Linkage Disequilibrium Polymerase Chain Reaction Primer Fluorescence Polarization Complex Human Disease Oligonucleotide Ligation Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Khoury, M. J. (1997) Genetic epidemiology and the future of disease prevention and public health. Epidemiol. Rev. 19, 175–180.PubMedGoogle Scholar
  2. 2.
    Nagy, A., Perrimon, N., Sandmeyer, S., and Plasterk, R. (2003) Tailoring the genome: the power of genetic approaches. Nature Genet. 33(Suppl.), 276–284.PubMedCrossRefGoogle Scholar
  3. 3.
    Zerhouni, E. (2003) Medicine. The NIH roadmap. Science 302, 63–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldstein, D. B., Tate, S. K., and Sisodiya, S. M. (2003) Pharmacogenetics goes genomic. Nature Rev. Genet. 4, 937–947.PubMedCrossRefGoogle Scholar
  5. 5.
    Merikangas, K. R. and Risch, N. (2003) Genomic priorities and public health. Science 302, 599–601.PubMedCrossRefGoogle Scholar
  6. 6.
    Kelada, S. N., Eaton, D. L., Wang, S. S., Rothman, N. R., and Khoury, M. J. (2003) The role of genetic polymorphisms in environmental health. Environ. Health Perspect. 111, 1055–1064.PubMedCrossRefGoogle Scholar
  7. 7.
    Shostak, S. (2003) Locating gene-environment interaction: at the intersections of genetics and public health. Soc. Sci. Med. 56, 2327–2342.PubMedCrossRefGoogle Scholar
  8. 8.
    Risch, N. J. (2000) Searching for genetic determinants in the new millennium. Nature 405, 847–856.PubMedCrossRefGoogle Scholar
  9. 9.
    Schork, N. J., Fallin, D., and Lanchbury, J. S. (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet. 58, 250–264.PubMedCrossRefGoogle Scholar
  10. 10.
    Cardon, L. R. and Palmer, L. J. (2003) Population stratification and spurious allelic association. Lancet 361, 598–604.PubMedCrossRefGoogle Scholar
  11. 11.
    Wright, A. F., Carothers, A. D., and Campbell, H. (2002) Gene-environment interactions-the BioBank UK study. Pharmacogenomics J. 2, 75–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Burke, W. (2003) Genomics as a probe for disease biology. N. Engl. J. Med. 349, 969–974.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson, J. A. (2003) Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet. 19, 660–666.PubMedCrossRefGoogle Scholar
  14. 14.
    Varmus, H. (2003) Genomic empowerment: the importance of public databases. Nature Genet. 35(Suppl. 1), 3.PubMedCrossRefGoogle Scholar
  15. 15.
    Reich, D. E., Gabriel, S. B., and Altshuler, D. (2003) Quality and completeness of SNP databases. Nature Genet. 33, 457–458.PubMedCrossRefGoogle Scholar
  16. 16.
    Venter, J. C., Levy, S., Stockwell, T., Remington, K., and Halpern, A. (2003) Massive parallelism, randomness and genomic advances. Nature Genet. 33(Suppl.), 219–227.PubMedCrossRefGoogle Scholar
  17. 17.
    Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33(Suppl), 228–237.PubMedCrossRefGoogle Scholar
  18. 18.
    Marth, G. T., Korf, I., Yandell, M. D., et al. (1999) A general approach to single-nucleotide polymorphism discovery. Nature Genet. 23, 452–456.PubMedCrossRefGoogle Scholar
  19. 19.
    Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedGoogle Scholar
  20. 20.
    Wang, D. G., Fan, J. B., Siao, C. J., et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082.PubMedCrossRefGoogle Scholar
  21. 21.
    Cargill, M., Altshuler, D., Ireland, J., et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238.PubMedCrossRefGoogle Scholar
  22. 22.
    The International HapMap Project (2003) The International HapMap Project. Nature 426, 789–796.CrossRefGoogle Scholar
  23. 23.
    Gray, I. C., Campbell, D. A., and Spurr, N. K. (2000) Single nucleotide polymorphisms as tools in human genetics. Hum. Mol. Genet. 9, 2403–2408.PubMedCrossRefGoogle Scholar
  24. 24.
    Carlson, C. S., Eberle, M. A., Rieder, M. J., Smith, J. D., Kruglyak, L., and Nickerson, D. A. (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nature Genet. 33, 518–521.PubMedCrossRefGoogle Scholar
  25. 25.
    Lazarus, R., Vercelli, D., Palmer, L. J., et al. (2002) Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol. Rev. 190, 9–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirk, B. W., Feinsod, M., Favis, R., Kliman, R. M., and Barany, F. (2002) Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res. 30, 3295–3311.PubMedCrossRefGoogle Scholar
  27. 27.
    Shi, M. M. (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin. Chem. 47, 164–172.PubMedGoogle Scholar
  28. 28.
    Kwok, P. Y. (2000) High-throughput genotyping assay approaches. Pharmacogenomics 1, 95–100.PubMedCrossRefGoogle Scholar
  29. 29.
    Kwok, P. Y. (2001) Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet. 2, 235–258.PubMedCrossRefGoogle Scholar
  30. 30.
    Gut, I. G. (2001) Automation in genotyping of single nucleotide polymorphisms. Hum. Mutat. 17, 475–492.PubMedCrossRefGoogle Scholar
  31. 31.
    Landegren, U., Nilsson, M., and Kwok, P. Y. (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8, 769–776.PubMedGoogle Scholar
  32. 32.
    Wang, S., Kidd, K. K., and Zhao, H. (2003) On the use of DNA pooling to estimate haplotype frequencies. Genet. Epidemiol. 24, 74–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Sham, P., Bader, J. S., Craig, I., O’Donovan, M., and Owen, M. (2002) DNA pooling: a tool for large-scale association studies. Nature Rev. Genet. 3, 862–871.PubMedCrossRefGoogle Scholar
  34. 34.
    Mamotte, C. D. and van Bockxmeer, F. M. (1993) A robust strategy for screening and confirmation of familial defective apolipoprotein B-100. Clin. Chem. 39, 118–121.PubMedGoogle Scholar
  35. 35.
    Day, I. N. and Humphries, S. E. (1994) Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose. Anal. Biochem. 222, 389–395.PubMedCrossRefGoogle Scholar
  36. 36.
    Newton, C. R., Summers, C., Heptinstall, L. E., et al. (1991) Genetic analysis in cystic fibrosis using the amplification refractory mutation system (ARMS): the J3.11 MspI polymorphism. J. Med. Genet. 28, 248–251.PubMedCrossRefGoogle Scholar
  37. 37.
    Rust, S., Funke, H., and Assmann, G. (1993) Mutagenically separated PCR (MS-PCR): a highly specific one step procedure for easy mutation detection. Nucleic Acids Res. 21, 3623–3629.PubMedCrossRefGoogle Scholar
  38. 38.
    Kokoris, M., Dix, K., Moynihan, K., et al. (2000) High-throughput SNP genotyping with the Masscode system. Mol. Diagn. 5, 329–340.PubMedGoogle Scholar
  39. 39.
    Tobe, V. O., Taylor, S. L., and Nickerson, D. A. (1996) Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res. 24, 3728–3732.PubMedCrossRefGoogle Scholar
  40. 40.
    Samiotaki, M., Kwiatkowski, M., Parik, J., and Landegren, U. (1994) Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics 20, 238–242.PubMedCrossRefGoogle Scholar
  41. 41.
    Grossman, P. D., Bloch, W., Brinson, E., et al. (1994) High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22, 4527–4534.PubMedCrossRefGoogle Scholar
  42. 42.
    Baron, H., Fung, S., Aydin, A., et al. (1997) Oligonucleotide ligation assay for detection of apolipoprotein E polymorphisms. Clin. Chem. 43, 1984–1986.PubMedGoogle Scholar
  43. 43.
    Zhong, X. B., Reynolds, R., Kidd, J. R., et al. (2003) Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl. Acad. Sci. USA 100, 11,559–11,564.PubMedCrossRefGoogle Scholar
  44. 44.
    Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57.PubMedCrossRefGoogle Scholar
  45. 45.
    Fan, J. B., Chen, X., Halushka, M. K., et al. (2000) Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860.PubMedCrossRefGoogle Scholar
  46. 46.
    Pastinen, T., Partanen, J., and Syvanen, A. C. (1996) Multiplex, fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. Clin. Chem. 42, 1391–1397.PubMedGoogle Scholar
  47. 47.
    Li, J., Butler, J. M., Tan, Y., et al. (1999) Single nucleotide polymorphism determination using primer extension and time-of-flight mass spectrometry. Electrophoresis 20, 1258–1265.PubMedCrossRefGoogle Scholar
  48. 48.
    Pastinen, T., Raitio, M., Lindroos, K., Tainola, P., Peltonen, L., and Syvanen, A. C. (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10, 1031–1042.PubMedCrossRefGoogle Scholar
  49. 49.
    Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149.PubMedGoogle Scholar
  50. 50.
    Tyagi, S., Bratu, D. P., and Kramer, F. R. (1998) Multicolor molecular beacons for allele discrimination. Nature Biotechnol. 16, 49–53.CrossRefGoogle Scholar
  51. 51.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308.CrossRefGoogle Scholar
  52. 52.
    Thelwell, N., Millington, S., Solinas, A., Booth, J., and Brown, T. (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 28, 3752–3761.PubMedCrossRefGoogle Scholar
  53. 53.
    Solinas, A., Brown, L. J., McKeen, C., et al. (2001) Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res. 29, E96.PubMedCrossRefGoogle Scholar
  54. 54.
    von Ahsen, N., Schutz, E., Armstrong, V. W., and Oellerich, M. (1999) Rapid detection of prothrombotic mutations of prothrombin (G20210A), factor V (G1691A), and methylenetetrahydrofolate reductase (C677T) by real-time fluorescence PCR with the LightCycler. Clin. Chem. 45, 694–696.Google Scholar
  55. 55.
    Chen, X., Levine, L., and Kwok, P. Y. (1999) Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res. 9, 492–498.PubMedGoogle Scholar
  56. 56.
    Latif, S., Bauer-Sardina, I., Ranade, K., Livak, K. J., and Kwok, P. Y. (2001) Fluorescence polarization in homogeneous nucleic acid analysis II: 5′-nuclease assay. Genome Res. 11, 436–440.PubMedCrossRefGoogle Scholar
  57. 57.
    Sauer, S., Lechner, D., Berlin, K., et al. (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res. 28, E13.PubMedCrossRefGoogle Scholar
  58. 58.
    Sauer, S., Lechner, D., Berlin, K., et al. (2000) Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nucleic Acids Res. 28, E100.PubMedCrossRefGoogle Scholar
  59. 59.
    Zielenski, J. and Tsui, L. (1995) Cystic fibrosis-genotypic and phenotypic variations. Annu. Rev. Genet. 29, 777–807.PubMedCrossRefGoogle Scholar
  60. 60.
    Altmuller, J., Palmer, L. J., Fischer, G., Scherb, H., and Wjst, M. (2001) Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet. 69, 93–950.CrossRefGoogle Scholar
  61. 61.
    Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex diseases. Nat. Rev. Genet. 2, 91–99.PubMedCrossRefGoogle Scholar
  62. 62.
    Keavney, B. (2000) Genetic association studies in complex diseases. J. Hum. Hypertens. 14, 361–367.PubMedCrossRefGoogle Scholar
  63. 63.
    Elston, R. (1995) The genetic dissection of multifactorial traits. Clin. Exp. Allergy 2, 103–106.CrossRefGoogle Scholar
  64. 64.
    Zondervan, K. T. and Cardon, L. R. (2004) The complex interplay among factors that influence allelic association. Nature Rev. Genet. 5, 89–100.PubMedCrossRefGoogle Scholar
  65. 65.
    Silverman, E. K. and Palmer, L. J. (2000) Case-control association studies for the genetics of complex respiratory diseases. Am. J. Respir. Cell. Mol. Biol. 22, 645–648.PubMedGoogle Scholar
  66. 66.
    Collins, A., Lonjou, C., and Morton, N. E. (1999) Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA 96, 15,173–15,177.PubMedCrossRefGoogle Scholar
  67. 67.
    Weeks, D. and Lathrop, G. (1995) Polygenic disease: methods for mapping complex disease traits. TIG 11, 513–519.PubMedCrossRefGoogle Scholar
  68. 68.
    Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002) Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet. 3, 299–309.PubMedCrossRefGoogle Scholar
  69. 69.
    Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., and Walters, L. (1998) New goals for the U.S. Human Genome Project: 1998-2003. Science 282, 682–689.PubMedCrossRefGoogle Scholar
  70. 70.
    Palmer, L. J. and Cookson, W. O. C. M. (2001) Using single nucleotide polymorphisms (SNPs) as a means to understanding the pathophysiology of asthma. Respir. Res. 2, 102–112.PubMedCrossRefGoogle Scholar
  71. 71.
    Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nature Genet. 17, 21–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Collins, F. S., Guyer, M. S., and Charkravarti, A. (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580–1581.PubMedCrossRefGoogle Scholar
  73. 73.
    Nickerson, D. A., Whitehurst, C., Boysen, C., Charmley, P., Kaiser, R., and Hood, L. (1992) Identification of clusters of biallelic polymorphic sequence-tagged sites (pSTSs) that generate highly informative and automatable markers for genetic linkage mapping. Genomics 12, 377–387.PubMedCrossRefGoogle Scholar
  74. 74.
    Chakravarti, A. (1998) It’s raining SNPs, hallelujah? [news]. Nature Genet. 19, 216–217.PubMedCrossRefGoogle Scholar
  75. 75.
    McKeigue, P. M. (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am. J. Hum. Genet. 63, 241–251.PubMedCrossRefGoogle Scholar
  76. 76.
    Kuhner, M. K., Beerli, P., Yamato, J., and Felsenstein, J. (2000) Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156, 439–447.PubMedGoogle Scholar
  77. 77.
    Stallings, R. L., Ford, A. F., Nelson, D., Torney, D. C., Hildebrand, C. E., and Moyzis, R. K. (1991) Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10, 807–815.PubMedCrossRefGoogle Scholar
  78. 78.
    Brookes, A. J. (1999) The essence of SNPs. Gene 8, 177–186.CrossRefGoogle Scholar
  79. 79.
    Edwards, J. and Bartlett, J. M. (2003) Mutation and polymorphism detection: a technical overview. Methods Mol. Biol. 226, 287–294.PubMedGoogle Scholar
  80. 80.
    Kruglyak, L. and Nickerson, D. A. (2001) Variation is the spice of life. Nature Genet. 27, 234–236.PubMedCrossRefGoogle Scholar
  81. 81.
    Dorman, J. S., LaPorte, R. E., Stone, R. A., and Trucco, M. (1990) Worldwide differences in the incidence of type I diabetes are associated with amino acid variation at position 57 of the HLA-DQ beta chain. Proc. Natl. Acad. Sci. USA 87, 7370–7374.PubMedCrossRefGoogle Scholar
  82. 82.
    Allen, M., Heinzmann, A., Noguchi, E., et al. (2003) Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genet. 35, 258–263.PubMedCrossRefGoogle Scholar
  83. 83.
    Hugot, J. P., Chamaillard, M., Zouali, H., et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603.PubMedCrossRefGoogle Scholar
  84. 84.
    Ogura, Y., Bonen, D. K., Inohara, N., et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606.PubMedCrossRefGoogle Scholar
  85. 85.
    Chagnon, Y. C., Rankinen, T., Snyder, E. E., Weisnagel, S. J., Perusse, L., and Bouchard, C. (2003) The human obesity gene map: the 2002 update. Obes. Res. 11, 313–367.PubMedCrossRefGoogle Scholar
  86. 86.
    Palmer, L. and Cookson, W. (2001) Using single nucleotide polymorphisms as a means to understanding the pathophysiology of asthma. Respir. Res. 2, 102–112.PubMedCrossRefGoogle Scholar
  87. 87.
    Stephens, J. C. (1999) Single-nucleotide polymorphisms, haplotypes, and their relevance to pharmacogenetics. Mol. Diagn. 4, 309–317.PubMedCrossRefGoogle Scholar
  88. 88.
    Rose, C. M., Marsh, S., Ameyaw, M. M., and McLeod, H. L. (2003) Pharmacogenetic analysis of clinically relevant genetic polymorphisms. Methods Mol. Med. 85, 225–237.PubMedGoogle Scholar
  89. 89.
    Lele, R. D. (2003) The human genome project: its implications in clinical medicine. J. Assoc. Physicians India 51, 373–380.PubMedGoogle Scholar
  90. 90.
    Mallal, S., Nolan, D., Witt, C., et al. (2002) Association between presence of HLA-B**5701, HLADR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732.PubMedCrossRefGoogle Scholar
  91. 91.
    Weiss, K. M. and Terwilliger, J. D. (2000) How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhao, L.P., Aragaki, C., Hsu, L., and Quiaoit, F. (1998) Mapping of complex traits by singlenucleotide polymorphisms. Am. J. Hum. Genet. 63, 225–240.PubMedCrossRefGoogle Scholar
  93. 93.
    Long, A. D. and Langley, C. H. (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731.PubMedGoogle Scholar
  94. 94.
    Terwilliger, J. D. and Goring, H. H. (2000) Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Hum. Biol. 72, 63–132.PubMedGoogle Scholar
  95. 95.
    Lander, E. and Schork, N. (1994) Genetic dissection of complex traits. Science 265, 2037–2048.PubMedCrossRefGoogle Scholar
  96. 96.
    Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517.PubMedCrossRefGoogle Scholar
  97. 97.
    Wolfe, K. H. and Li, W. H. (2003) Molecular evolution meets the genomics revolution. Nature Genet. 33(Suppl.), 255–265.PubMedCrossRefGoogle Scholar
  98. 98.
    Cardon, L. R. and Abecasis, G. R. (2003) Using haplotype blocks to map human complex trait loci. Trends Genet. 19, 135–140.PubMedCrossRefGoogle Scholar
  99. 99.
    Dahlman, I., Eaves, I. A., Kosoy, R., et al. (2002) Parameters for reliable results in genetic association studies in common disease. Nature Genet. 30, 149–150.PubMedCrossRefGoogle Scholar
  100. 100.
    Goldstein, D. B., Ahmadi, K. R., Weale, M. E., and Wood, N. W. (2003) Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet. 19, 615–622.PubMedCrossRefGoogle Scholar
  101. 101.
    Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A., and Contopoulos-Ioannidis, D. G. (2001) Replication validity of genetic association studies. Nature Genet. 29, 30–309.CrossRefGoogle Scholar
  102. 102.
    Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., and Hirschhorn, J. N. (2003) Metaanalysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet. 33, 177–182.PubMedCrossRefGoogle Scholar
  103. 103.
    Tabor, H. K., Risch, N. J., and Myers, R. M. (2002) Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Rev. Genet. 3, 391–397.PubMedCrossRefGoogle Scholar
  104. 104.
    Olson, J. M., Witte, J. S., and Elston, R. C. (1999) Genetic mapping of complex traits. Stat. Med. 18, 2961–2981.PubMedCrossRefGoogle Scholar
  105. 105.
    Lander, E. and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247.PubMedCrossRefGoogle Scholar
  106. 106.
    Witte, J. S., Elston, R. C., and Cardon, L. R. (2000) On the relative sample size required for multiple comparisons. Statist. Med. 19, 369–372.CrossRefGoogle Scholar
  107. 107.
    Austin, M. A., Harding, S., and McElroy, C. (2003) Genebanks: a comparison of eight proposed international genetic databases. Community Genet. 6, 37–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Rosner, B. Fundamental of Biostatistics. 3rd ed., PWS-Kent, Boston, MA.Google Scholar
  109. 109.
    Lee, W. C. (2002) Testing for candidate gene linkage disequilibrium using a dense array of single nucleotide polymorphisms in case-parents studies. Epidemiology 13, 545–551.PubMedCrossRefGoogle Scholar
  110. 110.
    Weiss, S. T., Silverman, E. K., and Palmer, L. J. (2001) Case-control association studies in pharmacogenetics. Pharmacogenomics J. 1, 157–158.PubMedGoogle Scholar
  111. 111.
    Palmer, L. J. and Cookson, W. O. C. M. (2000) Genomic approaches to understanding asthma. Genome Res. 10, 1280–1287.PubMedCrossRefGoogle Scholar
  112. 112.
    Feldman, M. W., Lewontin, R. C., and King, M. C. (2003) Race: a genetic melting-pot. Nature 424, 374.PubMedCrossRefGoogle Scholar
  113. 113.
    Risch, N., Burchard, E., Ziv, E., and Tang, H. (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol. 3, 2007.CrossRefGoogle Scholar
  114. 114.
    Shifman, S., Kuypers, J., Kokoris, M., Yakir, B., and Darvasi, A. (2003) Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 12, 771–776.PubMedCrossRefGoogle Scholar
  115. 115.
    Roewer, L., Kayser, M., de Knijff, P., et al. (2000) A new method for the evaluation of matches in non-recombining genomes: application to Y-chromosomal short tandem repeat (STR) haplotypes in European males. Forensic Sci. Int. 114, 31–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Zavattari, P., Deidda, E., Whalen, M., et al. (2000) Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Hum. Mol. Genet. 9, 2947–2957.PubMedCrossRefGoogle Scholar
  117. 117.
    Watkins, W. S., Zenger, R., O’Brien, E., et al. (1994) Linkage disequilibrium patterns vary with chromosomal location: a case study from the von Willebrand factor region. Am. J. Hum. Genet. 55, 348–355.PubMedGoogle Scholar
  118. 118.
    Jorde, L. B., Watkins, W. S., Carlson, M., et al. (1994) Linkage disequilibrium predicts physical distance in the adenomatous polyposis coli region. Am. J. Hum. Genet. 54, 884–898.PubMedGoogle Scholar
  119. 119.
    Cardon, L. R. and Palmer, L. J. (2003) Population stratification and spurious allelic association. Lancet 361, 598–604.PubMedCrossRefGoogle Scholar
  120. 120.
    Welborn, T. (1998) The Busselton Study: Mapping Population Health. Australasian Medical Publishing, Sydney.Google Scholar
  121. 121.
    Ewens, W. and Spielman, R. (1995) The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet. 57, 455–464.PubMedGoogle Scholar
  122. 122.
    Satten, G. A., Flanders, W. D., and Yang, Q. (2001) Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am. J. Hum. Genet. 68, 466–477.PubMedCrossRefGoogle Scholar
  123. 123.
    Devlin, B., Roeder, K., and Wasserman, L. (2001) Genomic control, a new approach to geneticbased association studies. Theor. Popul. Biol. 60, 155–166.PubMedCrossRefGoogle Scholar
  124. 124.
    Devlin, B., Roeder, K., and Bacanu, S. A. (2001) Unbiased methods for population-based association studies. Genet. Epidemiol. 21, 273–284.PubMedCrossRefGoogle Scholar
  125. 125.
    Overall, A. D. and Nichols, R. A. (2001) A method for distinguishing consanguinity and population substructure using multilocus genotype data. Mol. Biol. Evol. 18, 2048–2056.PubMedGoogle Scholar
  126. 126.
    Bacanu, S. A., Devlin, B., and Roeder, K. (2002) Association studies for quantitative traits in structured populations. Genet. Epidemiol. 22, 78–93.PubMedCrossRefGoogle Scholar
  127. 127.
    Pritchard, J. K. and Rosenberg, N. A. (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65, 220–228.PubMedCrossRefGoogle Scholar
  128. 128.
    Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. (2000) Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.PubMedCrossRefGoogle Scholar
  129. 129.
    Weiss, K. M. and Clark, A. G. (2002) Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Fallin, D., Cohen, A., Essioux, L., et al. (2001) Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer’s disease. Genome Res. 11, 143–151.PubMedCrossRefGoogle Scholar
  131. 131.
    Thomas, S., Porteous, D., and Visscher, P.M. (2004) Power of direct vs. indirect haplotyping in association studies. Genet. Epidemiol. 26, 116–124.PubMedCrossRefGoogle Scholar
  132. 132.
    Schaid, D. J. (2002) Relative efficiency of ambiguous vs. directly measured haplotype frequencies. Genet. Epidemiol. 23, 426–443.PubMedCrossRefGoogle Scholar
  133. 133.
    Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedGoogle Scholar
  134. 134.
    Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M., and Poland, G. A. (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70, 425–434.PubMedCrossRefGoogle Scholar
  135. 135.
    Niu, T., Qin, Z. S., Xu, X., and Liu, J. S. (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169.PubMedCrossRefGoogle Scholar
  136. 136.
    Stephens, M., Smith, N. J., and Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–89.PubMedCrossRefGoogle Scholar
  137. 137.
    Templeton, A. R. (1996) Cladistic approaches to identifying determinants of variability in multifactorial phenotypes and the evolutionary significance of variation in the human genome. Ciba Found. Symp. 197, 259–277.PubMedGoogle Scholar
  138. 138.
    Editorial (2003) Compare and contrast. Nature 426, 750–751.Google Scholar
  139. 139.
    Castillo-Davis, C. I. and Hartl, D. L. (2003) Conservation, relocation and duplication in genome evolution. Trends Genet. 19, 593–597.PubMedCrossRefGoogle Scholar
  140. 140.
    Yan, H., Kinzler, K. W., and Vogelstein, B. (2000) Tech.sight. Genetic testing-present and future. Science 289, 1890–1892.PubMedCrossRefGoogle Scholar
  141. 141.
    van Ommen, G. J., Bakker, E., and den Dunnen, J. T. (1999) The human genome project and the future of diagnostics, treatment, and prevention. Lancet 354(Suppl. 1), SI5–S10.PubMedGoogle Scholar
  142. 142.
    Ross, L. F. and Moon, M. R. (2000) Ethical issues in genetic testing of children. Arch. Pediatr. Adolesc. Med. 154, 873–8739.PubMedGoogle Scholar
  143. 143.
    Ohlstein, E. H., Ruffolo, R. R., Jr., and Elliott, J. D. (2000) Drug discovery in the next millennium. Annu. Rev. Pharmacol. Toxicol. 40, 177–191.PubMedCrossRefGoogle Scholar
  144. 144.
    Chanda, S. K. and Caldwell, J. S. (2003) Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov. Today 8, 168–174.PubMedCrossRefGoogle Scholar
  145. 145.
    Khoury, M. J., McCabe, L. L., and McCabe, E. R. (2003) Population screening in the age of genomic medicine. N. Engl. J. Med. 348, 50–58.PubMedCrossRefGoogle Scholar
  146. 146.
    Colditz, G. A., Manson, J. E., and Hankinson, S. E. (1997) The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J. Womens Health 6, 49–62.PubMedCrossRefGoogle Scholar
  147. 147.
    Clayton, D. and McKeigue, P. M. (2001) Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet 358, 1356–1360.PubMedCrossRefGoogle Scholar
  148. 148.
    Davey Smith, G. and Ebrahim, S. (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22.PubMedCrossRefGoogle Scholar
  149. 149.
    Kopelovich, L., Crowell, J. A., and Fay, J. R. (2003) The epigenome as a target for cancer chemoprevention. J. Natl. Cancer Inst. 95, 1747–1757.PubMedGoogle Scholar
  150. 150.
    Andersen, A. A. and Panning, B. (2003) Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol. 15, 281–289.PubMedCrossRefGoogle Scholar
  151. 151.
    Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33(Suppl.), 245–254.PubMedCrossRefGoogle Scholar
  152. 152.
    Jorde, L. (1995) Linkage disequilibrium as a gene-mapping tool [editorial; comment]. Am. J. Hum. Genet. 56, 11–14.PubMedGoogle Scholar
  153. 153.
    Toivonen, H. T., Onkamo, P., Vasko, K., et al. (2000) Data mining applied to linkage disequilibrium mapping. Am. J. Hum. Genet. 67, 133–145.PubMedCrossRefGoogle Scholar
  154. 154.
    Gabriel, S. B., Schaffner, S. F., Nguyen, H., et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.PubMedCrossRefGoogle Scholar
  155. 155.
    Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S. (2001) High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232.PubMedCrossRefGoogle Scholar
  156. 156.
    Patil, N., Berno, A. J., Hinds, D. A., et al. (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723.PubMedCrossRefGoogle Scholar
  157. 157.
    Tsui, C., Coleman, L. E., Griffith, J. L., et al. (2003) Single nucleotide polymorphisms (SNPs) that map to gaps in the human SNP map. Nucleic Acids Res. 31, 4910–4916.PubMedCrossRefGoogle Scholar
  158. 158.
    Johnson, G. C., Esposito, L., Barratt, B. J., et al. (2001) Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237.PubMedCrossRefGoogle Scholar
  159. 159.
    Sebastiani, P., Lazarus, R., Weiss, S. T., Kunkel, L. M., Kohane, I. S., and Ramoni, M. F. (2003) Minimal haplotype tagging. Proc. Natl. Acad. Sci. USA 100, 9900–9905.PubMedCrossRefGoogle Scholar
  160. 160.
    Schulze, T. G., Zhang, K., Chen, Y. S., Akula, N., Sun, F., and McMahon, F. J. (2004) Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. Hum. Mol. Genet. 13, 335–342.PubMedCrossRefGoogle Scholar
  161. 161.
    Chapman, J. M., Cooper, J. D., Todd, J. A., and Clayton, D. G. (2003) Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Heredity 56, 18–31.PubMedCrossRefGoogle Scholar
  162. 162.
    Zhang, K., Calabrese, P., Nordborg, M., and Sun, F. (2002) Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71, 1386–1394.PubMedCrossRefGoogle Scholar
  163. 163.
    Ke, X. and Cardon, L. R. (2003) Efficient selective screening of haplotype tag SNPs. Bioinformatics 19, 287–288.PubMedCrossRefGoogle Scholar
  164. 164.
    Wiuf, C., Laidlaw, Z., and Stumpf, M. P. (2003) Some notes on the combinatorial properties of haplotype tagging. Math. Biosci. 185, 205–216.PubMedCrossRefGoogle Scholar
  165. 165.
    Couzin, J. (2002) Human genome. HapMap launched with pledges of $100 million. Science 298, 941–942.PubMedCrossRefGoogle Scholar
  166. 166.
    Phillips, M. S., Lawrence, R., Sachidanandam, R., et al. (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genet. 33, 382–387.PubMedCrossRefGoogle Scholar
  167. 167.
    Wall, J. D. and Pritchard, J. K. (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597.PubMedCrossRefGoogle Scholar
  168. 168.
    Goldstein, D. B. and Weale, M. E. (2001) Population genomics: linkage disequilibrium holds the key. Curr. Biol. 11, R576–R579.PubMedCrossRefGoogle Scholar
  169. 169.
    Tishkoff, S. A. and Verrelli, B. C. (2003) Role of evolutionary history on haplotype block structure in the human genome: implications for disease mapping. Curr. Opin. Genet. Dev. 13, 569–575.PubMedCrossRefGoogle Scholar
  170. 170.
    Clark, A. G. (2003) Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Curr. Opin. Genet. Dev. 13, 296–302.PubMedCrossRefGoogle Scholar
  171. 171.
    Fields, S. (1997) The future is function. Nature Genet. 15, 325–327.PubMedCrossRefGoogle Scholar
  172. 172.
    Matsuzaki, H., Loi, H., Dong, S., et al. (2004) Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–425.PubMedCrossRefGoogle Scholar
  173. 173.
    Peltonen, L. and McKusick, V. A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. Science 291, 1224–1229.PubMedCrossRefGoogle Scholar
  174. 174.
    Kruglyak, L. (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144.PubMedCrossRefGoogle Scholar
  175. 175.
    Judson, R., Salisbury, B., Schneider, J., Windemuth, A., and Stephens, J. C. (2002) How many SNPs does a genome-wide haplotype map require? Pharmacogenomics 3, 379–391.PubMedCrossRefGoogle Scholar
  176. 176.
    Terwilliger, J. D. and Weiss, K. M. (1998) Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578–594.PubMedCrossRefGoogle Scholar
  177. 177.
    Abecasis, G. R., Noguchi, E., Heinzmann, A., et al. (2001) Extent and distribution of linkage disequilibrium in three genomic regions. Am. J. Hum. Genet. 68, 191–197.PubMedCrossRefGoogle Scholar
  178. 178.
    Hoh, J. and Ott, J. (2003) Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet. 4, 701–709.PubMedCrossRefGoogle Scholar
  179. 179.
    Hoh, J., Wille, A., and Ott, J. (2001) Trimming, weighting, and grouping SNPs in human casecontrol association studies. Genome Res. 11, 2115–2119.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Cyril Mamotte
    • 1
  • Frank Christiansen
    • 2
  • Lyle J. Palmer
    • 3
  1. 1.Department of Clinical Immunology and Biochemical GeneticsRoyal Perth HospitalPerthAustralia
  2. 2.Department of Clinical Immunology and Biochemical Genetics, Royal Perth Hospital; School of Surgery and PathologyUniversity of Western AustraliaPerthAustralia
  3. 3.Western Australian Institute for Medical Research, Centre for Medical Research, School of Population HealthUniversity of Western AustraliaPerthAustralia

Personalised recommendations