Advertisement

Ligase Chain Reaction

  • Carla Osiowy
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Nucleic acid amplification technologies have greatly facilitated medical diagnostics for genetic and infectious diseases through the exquisite sensitivity and specificity associated with these methods. Polymerase chain reaction (PCR) (see Chapter 6) ushered in these technologies and was soon accompanied by numerous newly developed amplification techniques, including ligase chain reaction (LCR). These nucleic acid amplification techniques result in the exponential increase of DNA such that the final product can be detected by nonisotopic means or without probe hybridization. Various techniques have been developed that amplify either the target DNA or the probes used to detect the specific target DNA. Ideally, any nucleic acid amplification technique used for diagnostic detection of DNA should incorporate high sensitivity and specificity and include effective discrimination of target DNA, low background values, ease of use, and the potential for automation. This chapter will describe the ligase chain reaction and highlight these qualities in light of its use as a diagnostic detection method

Keywords

Ligase Chain Reaction Padlock Probe Nucleic Acid Amplification Technique Ligation Detection Reaction Hyperkalemic Periodic Paralysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.PubMedCrossRefGoogle Scholar
  2. 2.
    Barany, F. (1991) The ligase chain reaction in a PCR world. PCR Methods Appl. 1, 5–16.PubMedGoogle Scholar
  3. 3.
    Wiedmann, M., Wilson, W. J., Czajka, J., Luo, J., Barany, F., and Batt, C. A. (1994) Ligase chain reaction (LCR)—overview and applications. PCR Methods Appl. 3, S51–S64.PubMedGoogle Scholar
  4. 4.
    Luo, J., Bergstrom, D. E., and Barany, F. (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078.PubMedCrossRefGoogle Scholar
  5. 5.
    Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) A ligase-mediated gene detection technique. Science 241, 1077–1080.PubMedCrossRefGoogle Scholar
  6. 6.
    Bottema, C. D. and Sommer, S. S. (1993) PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat. Res. 288, 93–102.PubMedGoogle Scholar
  7. 7.
    Schweitzer, B. and Kingsmore, S. (2001) Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12, 21–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Nickerson, D. A., Kaiser, R., Lappin, S., Stewart, J., Hood, L., and Landegren, U. (1990) Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87, 8923–8927.PubMedCrossRefGoogle Scholar
  9. 9.
    Niederhauser, C., Kaempf, L., and Heinzer, I. (2000) Use of the ligase detection reaction-polymerase chain reaction to identify point mutations in extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 19, 477–480.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569.PubMedCrossRefGoogle Scholar
  11. 11.
    Reyes, A. A., Carrera, P., Cardillo, E., et al. (1997) Ligase chain reaction assay for human mutations: the sickle cell by LCR assay. Clin. Chem. 43, 40–44.PubMedGoogle Scholar
  12. 12.
    Landegren, U., Samiotaki, M., Nilsson, M., Malmgren, H., and Kwiatkowski, M. (1996) Detecting genes with ligases. Methods 9, 84–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Zirvi, M., Nakayama, T., Newman, G., McCaffrey, T., Paty, P., and Barany, F. (1999) Ligase-based detection of mononucleotide repeat sequences. Nucleic Acids Res. 27, e40i–e40viii.Google Scholar
  14. 14.
    Wilson, V. L., Wei, Q., Wade, K. R., et al. (1999) Needle-in-a-haystack detection and identification of base substitution mutations in human tissues. Mutat. Res. 406, 79–100.PubMedGoogle Scholar
  15. 15.
    Martinez, A., Lehman, T. A., Modali, R., and Mulshine, J. L. (2003) Screening of mutations in the ras family of oncogenes by polymerase chain reaction-based ligase chain reaction. Methods Mol. Biol. 74, 187–200.Google Scholar
  16. 16.
    Batt, C. A., Wagner, P., Wiedmann, M., Luo, J., and Gilbert, R. (1994) Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. Anim. Genet. 25, 95–98.PubMedGoogle Scholar
  17. 17.
    Zebala, J. A. and Barany, F. (1993) Implications for the ligase chain reaction in gastroenterology. J. Clin. Gastroenterol. 17, 171–175.PubMedCrossRefGoogle Scholar
  18. 18.
    Muth, J., Williams, P. M., Williams, S. J., Brown, M. D., Wallace, D. C., and Karger, B. L. (1996) Fast capillary electrophoresis-laser induced fluorescence analysis of ligase chain reaction products: human mitochondrial DNA point mutations causing Leber’s hereditary optic neuropathy. Electrophoresis 17, 1875–1883.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, J. and Lee, H.-J. (2000) Rapid discriminatory detection of genes coding for SHV *B-lactamases by ligase chain reaction. Antimicrob. Agents Chemother. 44, 1860–1864.PubMedCrossRefGoogle Scholar
  20. 20.
    Minamitani, S., Nishiguchi, S., Kuroki, T., Otani, S., and Monna, T. (1997) Detection by ligase chain reaction of precore mutant of Hepatitis B virus. Hepatology 25, 216–222.PubMedCrossRefGoogle Scholar
  21. 21.
    Devi Karthigesu, V., Mendy, M., Fortuin, M., Whittle, H. C., Howard, C. R., and Allison, L. M. C. (1995) The ligase chain reaction distinguishes hepatitis B virus S-gene variants. FEMS Microbiol. Lett. 131, 127–132.CrossRefGoogle Scholar
  22. 22.
    Osiowy, C. (2002) Sensitive detection of HBsAg mutants by a gap ligase chain reaction assay. J. Clin. Microbiol. 40, 2566–2571.PubMedCrossRefGoogle Scholar
  23. 23.
    Abravaya, K., Carrino, J. J., Muldoon, S., and Lee, H. H. (1995) Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 23, 675–682.PubMedCrossRefGoogle Scholar
  24. 24.
    Bourgeois, C., Sixt, N., Bour, J. B., and Pothier, P. (1997) Value of a ligase chain reaction assay for detection of ganciclovir resistance-related mutation 594 in UL97 gene of human cytomegalovirus. J. Virol. Methods 67, 167–175.PubMedCrossRefGoogle Scholar
  25. 25.
    Wolcott, M. J. (1992) Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev. 5, 370–386.PubMedGoogle Scholar
  26. 26.
    Andras, S. C., Power, J. B., Cocking, E. C., and Davey, M. R. (2001) Strategies for signal amplification in nucleic acid detection. Mol. Biotechnol. 19, 29–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Winn-Deen, E. S. (1996) Multi-mutation screening using PCR and ligation—principles and applications. Trends Biotechnol. 14, 112–114.PubMedCrossRefGoogle Scholar
  28. 28.
    Jarvius, J., Nilsson, M., and Landegren, U. (2003) Oligonucleotide ligation assay. Methods Mol. Biol. 212, 215–228.PubMedGoogle Scholar
  29. 29.
    Gilpin, C. M., Dawson, D. J., O’Kane, G., Armstrong, J.G., and Coulter, C. (2002) Failure of commercial ligase chain reaction to detect Mycobacterium tuberculosis DNA in sputum samples from a patient with smear-positive pulmonary tuberculosis due to a deletion of the target region. J. Clin. Microbiol. 40, 2305–2307.PubMedCrossRefGoogle Scholar
  30. 30.
    Shimer, G.H., Jr. and Backman, K. C. (1995) Ligase chain reaction. Methods Mol. Biol. 46, 269–278.PubMedGoogle Scholar
  31. 31.
    Demchinskaya, A. V., Shilov, I. A., Karyagina, A. S., et al. (2001) A new approach for point mutation detection based on a ligase chain reaction. J. Biochem. Biophys. Methods 50, 79–89.PubMedCrossRefGoogle Scholar
  32. 32.
    Davies, P. O. and Ridgway, G. L. (1997) The role of polymerase chain reaction and ligase chain reaction for the detection of Chlamydia trachomatis. Int. J. STD AIDS 8, 731–738.PubMedCrossRefGoogle Scholar
  33. 33.
    Laffler, T., Carrino, J. J., and Marshall, R. L. (1993) The ligase chain reaction in DNA-based diagnosis. Ann. Biol. Clin. 50, 821–826.Google Scholar
  34. 34.
    Pfeffer, M., Meyer, H., and Wiedmann, M. (1994) A ligase chain reaction targeting two adjacent nucleotides allows the differentiation of cowpox virus from other Orthopoxvirus species. J. Virol. Methods 49, 353–360.CrossRefGoogle Scholar
  35. 35.
    Trippler, M., Hampl, H., Goergen, B., et al. (1996) Ligase chain reaction (LCR) assay for semiquantitative detection of HBV DNA in mononuclear leukocytes of patients with chronic hepatitis B. J. Viral Hepat. 3, 267–272.CrossRefGoogle Scholar
  36. 36.
    Rouwendal, G. J. A., Wolbert, E. J. H., Zwiers, L.-H., and Springer, J. (1996) Ligase chain reaction for site-directed in vitro mutagenesis. Methods Mol. Biol. 57, 149–156.PubMedGoogle Scholar
  37. 37.
    Kalin, I., Shephard, S., and Candrian, U. (1992) Evaluation of the ligase chain reaction (LCR) for the detection of point mutations. Mutat. Res. 283, 119–123.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, H. H. (1996) Ligase chain reaction. Biologicals 24, 197–199.PubMedCrossRefGoogle Scholar
  39. 39.
    Marshall, R. L., Laffler, T., Cerney, M. B., Sustachek, J. C., Kratochvil, J., and Morgan, R. L. (1994) Detection of HCV RNA by the asymmetric gap ligase chain reaction. PCR Methods Appl. 4, 80–84.PubMedGoogle Scholar
  40. 40.
    Schachter, J. (1997) DFA, EIA, PCR, LCR and other technologies: what tests should be used for diagnosis of Chlamydia infections? Immunol. Invest. 26, 157–161.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, S. X. and Tay, L. (1999) Evaluation of three nucleic acid amplification methods for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J. Clin. Microbiol. 37, 1932–1934.PubMedGoogle Scholar
  42. 42.
    Black, C. M., Marrazzo, J., Johnson, R. E., et al. (2002) Head-to-head multicenter comparison of DNA probe and nucleic acid amplification tests for Chlamydia trachomatis infection in women performed with an improved reference standard. J. Clin. Microbiol. 40, 3757–3763.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheng, J., Shoffner, M. A., Mitchelson, K. R., Kricka, L. J., and Wilding, P. (1996) Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. J. Chromatogr. A 732, 151–158.PubMedCrossRefGoogle Scholar
  44. 44.
    Jungkind, D. (2001) Molecular testing for infectious disease. Science 294, 1553–1555.PubMedCrossRefGoogle Scholar
  45. 45.
    Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Worl, R., and Koster, H. (1996) Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 237, 174–181.PubMedCrossRefGoogle Scholar
  46. 46.
    de Mendoza, C., Alcami, J., Sainz, M., Folgueira, D., and Soriano, V. (2002) Evaluation of the Abbott LCx quantitative assay for measurement of human immunodeficiency virus RNA in plasma. J. Clin. Microbiol. 40, 1518–1521.CrossRefGoogle Scholar
  47. 47.
    Crotty, P. L., Staggs, R. A., Porter, P. T., Killeen, A. A., and McGlennen, R. C. (1994) Quantitative analysis in molecular diagnostics. Hum. Pathol. 25, 572–579.PubMedCrossRefGoogle Scholar
  48. 48.
    Marshall, R. L., Cockerill, J., Friedman, P., et al. (1998) Detection of GB virus C by the RT-PCR LCx system. J. Virol. Methods 73, 99–107.PubMedCrossRefGoogle Scholar
  49. 49.
    Nilsson, M., Antson, D.-O., Barbany, G., and Landegren, U. (2001) RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res. 29, 578–581.PubMedCrossRefGoogle Scholar
  50. 50.
    Au, L. C., Yang, F. Y., Yang, W. J., Lo, S. H., and Kao, C. F. (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem. Biophys. Res. Commun. 248, 200–203.PubMedCrossRefGoogle Scholar
  51. 51.
    Chalmers, F. M. and Curnow, K. M. (2001) Scaling up the ligase chain reaction-based approach to gene synthesis. Biotechniques 30, 249–252.PubMedGoogle Scholar
  52. 52.
    Rouwendal, G. J. A., Wolbert, E. J. H., Zwiers, L.-H., and Springer, J. (1993) Simultaneous mutagenesis of multiple sites: application of the ligase chain reaction using PCR products instead of oligonucleotides. Biotechniques 15, 68–76.PubMedGoogle Scholar
  53. 53.
    Boguszewski, C. L., Svensson, P. A., Jansson, T., Clark, R., Carlsson, L. M., and Carlsson, B. (1998) Cloning of two novel growth hormone transcripts expressed in human placenta. J. Clin. Endocrinol. Metab. 83, 2878–2885.PubMedCrossRefGoogle Scholar
  54. 54.
    Balles, J. and Pflugfelder, G. O. (1994) Facilitated isolation of rare recombinants by ligase chain reaction: selection for intragenic crossover events in the Drosophila optomotor-blind gene. Mol. Gen. Genet. 245, 734–740.PubMedCrossRefGoogle Scholar
  55. 55.
    Feero, W. G., Wang, J., Barany, F., et al. (1993) Hyperkalemic periodic paralysis: rapid molecular diagnosis and relationship of genotype to phenotype in 12 families. Neurology 43, 668–673.PubMedGoogle Scholar
  56. 56.
    Shi, M. M. (2002) Technologies for individual genotyping: detection of genetic polymorphisms in drug targets and disease genes. Am. J. Pharmacogenom. 2, 197–205.CrossRefGoogle Scholar
  57. 57.
    Day, D. J., Speiser, P. W., White, P. C., and Barany, F. (1995) Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 29, 152–162.PubMedCrossRefGoogle Scholar
  58. 58.
    Jou, C., Rhoads, J., Bouma, S., et al. (1995) Deletion detection in the dystrophin gene by multiplex gap ligase chain reaction and immunochromatographic strip technology. Hum. Mutat. 5, 86–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Wilson, W. J., Wiedmann, M., Dillard, H. R., and Batt, C. A. (1994) Identification of Erwinia stewartii by a ligase chain reaction assay. Appl. Environ. Microbiol. 60, 278–284.PubMedGoogle Scholar
  60. 60.
    Hatziloukas, E., Tooley, P., and Carras, M. (1998) Ligase chain reaction-based detection of the potato pathogen Phytophthora infestans, in Proc. COST 823: New Technologies to Improve Phytodiagnosis, 12.Google Scholar
  61. 61.
    Moore, D. F. and Curry, J. I. (1998) Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by ligase chain reaction. J. Clin. Microbiol. 36, 1028–1031.PubMedGoogle Scholar
  62. 62.
    O’Connor, T. M., Sheehan, S., Cryan, B., Brennan, N., and Bredin, C. P. (2000) The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis. Thorax 55, 955–957.CrossRefGoogle Scholar
  63. 63.
    Tortoli, E., Lavinia, F., and Simonetti, M. T. (1997) Evaluation of a commercial ligase chain reaction kit (Abbott LCx) for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary specimens. J. Clin. Microbiol. 35, 2424–2426.PubMedGoogle Scholar
  64. 64.
    Lindbrathen, A., Gaustad, P., Hovig, B., and Tonjum, T. (1997) Direct detection of Mycobacterium tuberculosis complex in clinical samples from patients in Norway by ligase chain reaction. J. Clin. Microbiol. 35, 3248–3253.PubMedGoogle Scholar
  65. 65.
    Palacios, J. J., Ferro, J., Ruiz Palma, N., et al. (1998) Comparison of the ligase chain reaction with solid and liquid culture media for routine detection of Mycobacterium tuberculosis in nonrespiratory specimens. Eur. J. Clin. Microbiol. Infect. Dis. 17, 767–772.PubMedCrossRefGoogle Scholar
  66. 66.
    Gamboa, F., Dominguez, J., Padilla, E., et al. (1998) Rapid diagnosis of extrapulmonary tuberculosis by ligase chain reaction amplification. J. Clin. Microbiol. 36, 1324–1329.PubMedGoogle Scholar
  67. 67.
    Lumb, R., Davies, K., Dawson, D., et al. (1999) Multicenter evaluation of the Abbott LCx Mycobacterium tuberculosis ligase chain reaction assay. J. Clin. Microbiol. 37, 3102–3107.PubMedGoogle Scholar
  68. 68.
    Ausina, V., Gamboa, F., Gazapo, E., et al. (1997) Evaluation of the semiautomated Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J. Clin. Microbiol. 35, 1996–2002.PubMedGoogle Scholar
  69. 69.
    Ruiz-Serrano, M. J., Albadalejo, J., Martinez-Sanchez, L., and Bouza, E. (1998) LCx: A diagnostic alternative for the early detection of Mycobacterium tuberculosis complex. Diagn. Microbiol. Infect. Dis. 32, 259–264.PubMedCrossRefGoogle Scholar
  70. 70.
    Tortoli, E., Lavinia, F., and Simonetti, M. T. (1998) Early detection of Mycobacterium tuberculosis in BACTEC cultures by ligase chain reaction. J. Clin. Microbiol. 36, 2791–2792.PubMedGoogle Scholar
  71. 71.
    Wang, L. and Tay, L. (2002) Early identification of Mycobacterium tuberculosis complex in BACTEC cultures by ligase chain reaction. J. Med. Microbiol. 51, 710–712.PubMedGoogle Scholar
  72. 72.
    Jouveshomme, S., Cambau, E., Trystram, D., et al. (1998) Clinical utility of an amplification test based on ligase chain reaction in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 158, 1096–1101.PubMedGoogle Scholar
  73. 73.
    Leckie, G. W., Erickson, D. D., He, Q., et al. (1998) Method for reduction of inhibition in a Mycobacterium tuberculosis-specific ligase chain reaction DNA amplification assay. J. Clin. Microbiol. 36, 764–767.PubMedGoogle Scholar
  74. 74.
    Smith, K. R., Ching, S., Lee, H., et al. (1995) Evaluation of ligase chain reaction for use with urine for identification of Neisseria gonorrhoeae in females attending a sexually transmitted disease clinic. J. Clin. Microbiol. 33, 455–457.PubMedGoogle Scholar
  75. 75.
    Kacena, K. A., Quinn, S. B., Hartman, S. C., Quinn, T. C., and Gaydos, C. A. (1998) Pooling of urine samples for screening for Neisseria gonorrhoeae by ligase chain reaction: accuracy and application. J. Clin. Microbiol. 36, 3624–3628.PubMedGoogle Scholar
  76. 76.
    Stary, A. (1999) Correct samples for diagnostic tests in sexually transmitted diseases: which sample for which test? FEMS Immunol. Med. Microbiol. 24, 455–459.PubMedGoogle Scholar
  77. 77.
    Hook, E. W., III, Ching, S. F., Stephens, J., Hardy, K. F., Smith, K. R., and Lee, H. H. (1997) Diagnosis of Neisseria gonorrhoeae infections in women by using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35, 2129–2132.PubMedGoogle Scholar
  78. 78.
    Kehl, S.C., Georgakas, K., Swain, G. R., et al. (1998) Evaluation of the Abbott LCx assay for detection of Neisseria gonorrhoeae in endocervical swab specimens from females. J. Clin. Microbiol. 36, 3549–3551.PubMedGoogle Scholar
  79. 79.
    Buimer, M., Van Doornum, G. J. J., Ching, S., et al. (1996) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by ligase chain reaction-based assays with clinical specimens from various sites: Implications for diagnostic testing and screening. J. Clin. Microbiol. 34, 2395–2400.PubMedGoogle Scholar
  80. 80.
    Carroll, K. C., Aldeen, W. E., Morrison, M., Anderson, R., Lee, D., and Mottice, S. (1998) Evaluation of the Abbott LCx ligase chain reaction assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine and genital swab specimens from a sexually transmitted disease clinic population. J. Clin. Microbiol. 36, 1630–1633.PubMedGoogle Scholar
  81. 81.
    Brodine, S. K., Shafer, M., Shaffer, R. A., et al. (1998) Asymptomatic sexually transmitted disease prevalence in four military populations: application of DNA amplification assays for Chlamydia and gonorrhea screening. J. Infect. Dis. 178, 1202–1204.PubMedCrossRefGoogle Scholar
  82. 82.
    de Barbeyrac, B., Rodriguez, P., Dutilh, B., Le Roux, P., and Bebear, C. (1995) Detection of Chlamydia trachomatis by ligase chain reaction compared with polymerase chain reaction and cell culture in urogenital specimens. Genitourin. Med. 71, 382–386.Google Scholar
  83. 83.
    Puolakkainen, M., Hiltunen-Back, E., Reunala, T., et al. (1998) Comparison of performances of two commercially available tests, a PCR assay and a ligase chain reaction test, in detection of urogenital Chlamydia trachomatis infection. J. Clin. Microbiol. 36, 1489–1493.PubMedGoogle Scholar
  84. 84.
    Waites, K. B., Smith, K. R., Crum, M. A., Hockett, R. D., Wells, A. H., and Hook, E.W., III. (1999) Detection of Chlamydia trachomatis endocervical infections by ligase chain reaction versus ACCESS Chlamydia antigen assay. J. Clin. Microbiol. 37, 3072–3073.PubMedGoogle Scholar
  85. 85.
    Rabenau, H. F., Kohler, E., Peters, M., Doerr, H. W., and Weber, B. (2000) Low correlation of serology with detection of Chlamydia trachomatis by ligase chain reaction and antigen EIA. Infection 28, 97–102.PubMedCrossRefGoogle Scholar
  86. 86.
    Watson, E. J., Templeton, A., Russell, I., et al. (2002) The accuracy and efficacy of screening tests for Chlamydia trachomatis: a systematic review. J. Med. Microbiol. 51, 1021–1031.PubMedGoogle Scholar
  87. 87.
    Rumpianesi, F., Donati, M., La Placa, M., Negosanti, M., D’Antuono, A., and Cevenini, R. (1996) Use of the ligase chain reaction on urine of men and their female sexual partners for detection of genital Chlamydia trachomatis infection. Clin. Microbiol. Infect. 2, 123–126.PubMedCrossRefGoogle Scholar
  88. 88.
    Palmer, L. and Falkow, S. (1986) A common plasmid of Chlamydia trachomatis. Plasmid 16, 52–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Joseph, T., Nano, F. E., Garon, C. F., and Caldwell, H. D. (1986) Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect. Immun. 51, 699–703.PubMedGoogle Scholar
  90. 90.
    Bassiri, M., Hu, H.-Y., Domeika, M.A., et al. (1995) Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction. J. Clin. Microbiol. 33, 898–900.PubMedGoogle Scholar
  91. 91.
    Hadgu, A. (1997) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis. Statist. Med. 16, 1391–1399.CrossRefGoogle Scholar
  92. 92.
    Chernesky, M., Sellors, J., and Mahony, J. (1998) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis: letter to the editor. Statist. Med. 17, 1055–1066.CrossRefGoogle Scholar
  93. 93.
    Schachter, J. (1998) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis: letter to the editor. Statist. Med. 17, 1527–1530.CrossRefGoogle Scholar
  94. 94.
    Johnson, R. E., Green, T. A., Schachter, J., et al. (2000) Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men. J. Clin. Microbiol. 38, 4382–4386.PubMedGoogle Scholar
  95. 95.
    Van Dyck, E., Ieven, M., Pattyn, S., Van Damme, L., and Laga, M. (2001) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J. Clin. Microbiol. 39, 1751–1756.CrossRefGoogle Scholar
  96. 96.
    Winter, A. J., Gilleran, G., Eastick, K., and Ross, J. D. C. (2000) Comparison of a ligase chain reaction-based assay and cell culture for detection of pharyngeal carriage of Chlamydia trachomatis. J. Clin. Microbiol. 38, 3502–3504.PubMedGoogle Scholar
  97. 97.
    Noguchi, Y., Yabushita, H., Noguchi, M., Fujita, M., Asai, M., and Del Carpio, C. A. (2002) Detection of Chlamydia trachomatis infection with DNA extracted from formalin-fixed paraffin-embedded tissues. Diagn. Microbiol. Infect. Dis. 43, 1–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Nikkari, S., Puolakkainen, M., Yli-Kerttula, U., Luukkainen, R., Lehtonen, O.-P., and Toivanen, P. (1997) Ligase chain reaction in detection of Chlamydia DNA in synovial fluid cells. Br. J. Rheumatol. 36, 763–765.PubMedCrossRefGoogle Scholar
  99. 99.
    Blocker, M. E., Krysiak, R. G., Behets, F., Cohen, M. S., and Hobbs, M. M. (2002) Quantification of Chlamydia trachomatis elementary bodies in urine by ligase chain reaction. J. Clin. Microbiol. 40, 3631–3634.PubMedCrossRefGoogle Scholar
  100. 100.
    Neu, N., Grumet, S., McNees, A., et al. (1999) Screening for Chlamydia trachomatis in young men by ligase chain reaction. Pediatr. Infect. Dis. J. 18, 649–650.PubMedCrossRefGoogle Scholar
  101. 101.
    Battle, T. J., Golden, M. R., Suchland, K. L., et al. (2001) Evaluation of laboratory testing methods for Chlamydia trachomatis infection in the era of nucleic acid amplification. J. Clin. Microbiol. 39, 2924–2927.PubMedCrossRefGoogle Scholar
  102. 102.
    Dean, D., Ferrero, D., and McCarthy, M. (1998) Comparison of performance and cost-effectiveness of direct fluorescent-antibody, ligase chain reaction, and PCR assays for verification of chlamydia enzyme immunoassay results for populations with a low to moderate prevalence of Chlamydia trachomatis infection. J. Clin. Microbiol. 36, 94–99.PubMedGoogle Scholar
  103. 103.
    Clad, A., Prillwitz, J., Hintz, K. C., et al. (2001) Discordant prevalence of Chlamydia trachomatis in asymptomatic couples screened using urine ligase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 20, 324–328.PubMedCrossRefGoogle Scholar
  104. 104.
    Mahony, J., Chong, S., Jang, D., et al. (1998) Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction, and transcription-mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J. Clin. Microbiol. 36, 3122–3126.PubMedGoogle Scholar
  105. 105.
    Jensen, I. P., Thorson, P., and Moller, B. R. (1997) Sensitivity of ligase chain reaction assay of urine from pregnant women for Chlamydia trachomatis. Lancet 349, 329–330.PubMedCrossRefGoogle Scholar
  106. 106.
    Gaydos, C. A., Howell, M. R., Quinn, T. C., Gaydos, J. C., and McKee, K. T., Jr. (1998) Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicolaou smear clinics. J. Clin. Microbiol. 36, 1300–1304.PubMedGoogle Scholar
  107. 107.
    Horner, P. J., Crowley, T., Leece, J., Hughes, A., Smith, G. D., and Caul, E. O. (1998) Chlamydia trachomatis detection and the menstrual cycle. Lancet 351, 341–342.PubMedCrossRefGoogle Scholar
  108. 108.
    Webster Dicker, L., Mosure, D. J., Levine, W. C., Black, C. M., and Berman, S. M. (2000) Impact of switching laboratory tests on reported trends in Chlamydia trachomatis infections. Am. J. Epidemiol. 151, 430–435.Google Scholar
  109. 109.
    Notomi, T., Ikeda, Y., Okadome, A., and Nagayama, A. (1998) The inhibitory effect of phosphate on the ligase chain reaction used for detecting Chlamydia trachomatis. J. Clin. Pathol. 51, 306–308.PubMedCrossRefGoogle Scholar
  110. 110.
    Thomas, B., Pierpoint, T., Taylor-Robinson, D., and Renton, A. (2001) Qualitative and quantitative aspects of the ligase chain reaction assay for Chlamydia trachomatis in genital tract samples and urines. Int. J. STD AIDS 12, 589–594.PubMedCrossRefGoogle Scholar
  111. 111.
    Castriciano, S., Luinstra, K., Jang, D., et al. (2002) Accuracy of results obtained by performing a second ligase chain reaction assay and PCR analysis on urine samples with positive or near-cutoff results in the LCx test for Chlamydia trachomatis. J. Clin. Microbiol. 40, 2632–2634.PubMedCrossRefGoogle Scholar
  112. 112.
    Thomas, B., Pierpoint, T., Taylor-Robinson, D., and Renton, A. (2001) Reduced detection of Chlamydia trachomatis by the ligase chain reaction assay due to suboptimal storage of urine. Eur. J. Clin. Microbiol. Infect. Dis. 20, 581–583.PubMedCrossRefGoogle Scholar
  113. 113.
    Allain, J.-P. (2000) Genomic screening for blood-borne viruses in transfusion settings. Clin. Lab. Haem. 22, 1–10.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Carla Osiowy
    • 1
  1. 1.National Microbiology LaboratoryCanadian Science Centre for Human and Animal HealthWinnipeg, ManitobaCanada

Personalised recommendations