Advertisement

Amplification Refractory Mutation System and Molecular Diagnostics

  • Richard Kitching
  • Arun Seth
Protocol
  • 1.5k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Allele-specific polymerase chain reaction (PCR) was first described in 1989, with variations arising over the next few years such as allele-specific oligonucleotide PCR, mutant-allele-specific amplification (MASA), PCR amplification of specific alleles (PASA), and the amplification refractory mutation system (ARMS) (1, 2, 3, 4, 5). For convenience, the term ARMS will be used here when referring to them collectively.

Keywords

Human Papilloma Virus Fluorescence Resonance Energy Transfer Medullary Thyroid Carcinoma Amplification Refractory Mutation System Polymerase Chain Reaction Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Okayama, H., Curiel, D. T., Brantly, M. L., Holmes, M. D., and Crystal, R. G. (1989) Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification. J. Lab. Clin. Med. 114, 105–113.PubMedGoogle Scholar
  2. 2.
    Newton, C. R., Graham, A., Heptinstall, L. E., et al. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayashi, N., Ito, I., Yanagisawa, A., et al. (1995) Genetic diagnosis of lymph-node metastasis in colorectal cancer. Lancet 345, 1257–1259.PubMedCrossRefGoogle Scholar
  4. 4.
    Sommer, S. S., Groszbach, A. R., and Bottema, C. D. (1992) PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12, 82–87.PubMedGoogle Scholar
  5. 5.
    Richter, S. and Seth, A. (1998) One step direct detection of recurrent mutations in the breast cancer susceptibility gene, BRCA1. Int. J. Oncol. 12, 1263–1267.PubMedGoogle Scholar
  6. 6.
    Maher, C., Crowley, D., Cullen, C., Wall, C., Royston, D., and Fanning, S. (1999) Double fluorescent-amplification refractory mutation detection (dF-ARMS) of the factor V Leiden and prothrombin mutations. Thromb. Haemost. 81, 76–80.Google Scholar
  7. 7.
    Humeny, A., Rodel, F., Rodel, C., et al. (2003) MDR1 single nucleotide polymorphism C3435T in normal colorectal tissue and colorectal carcinomas detected by MALDI-TOF mass spectrometry. Anticancer Res. 23, 2735–2740.PubMedGoogle Scholar
  8. 8.
    Bengra, C., Mifflin, T. E., Khripin, Y., et al. (2002) Genotyping of essential hypertension singlenucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin. Chem. 48, 2131–2140.PubMedGoogle Scholar
  9. 9.
    Myakishev, M. V., Khripin, Y., Hu, S., and Hamer, D. H. (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11, 163–169.PubMedCrossRefGoogle Scholar
  10. 10.
    Gelsthorpe, A. R., Wells, R. S., Lowe, A. P., Tonks, S., Bodmer, J. G., and Bodmer, W. F. (1999) High-throughput class I HLA genotyping using fluorescence resonance energy transfer (FRET) probes and sequence-specific primer-polymerase chain reaction (SSP-PCR). Tissue Antigens 54, 603–614.PubMedCrossRefGoogle Scholar
  11. 11.
    Graur, D. and Li, W.-H. (2000) Fundamentals of Molecular Evolution, 2nd ed., Sinauer Associates, Sunderland, MA, p XIV.Google Scholar
  12. 12.
    Cotton, R. G. and Horaitis, O. (2002) The HUGO Mutation Database Initiative. Human Genome Organization. Pharmacogenom. J., 2, 16–19.CrossRefGoogle Scholar
  13. 13.
    Finn, G. K., Kurz, B. W., Cheng, R. Z., and Shmookler Reis, R. J. (1989) Homologous plasmid recombination is elevated in immortally transformed cells. Mol. Cell Biol. 9, 4009–4017.PubMedGoogle Scholar
  14. 14.
    Ayyadevara, S., Thaden, J. J., and Shmookler Reis, R. J. (2000) Discrimination of primer 3′-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. Anal. Biochem. 284, 11–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Ye, S., Dhillon, S., Ke, X., Collins, A. R., and Day, I. N. (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29, E88.PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts, R., Joyce, P., and Kennedy, M. A. (2000) Rapid and comprehensive determination of cytochrome P450 CYP2D6 poor metabolizer genotypes by multiplex polymerase chain reaction. Hum. Mutat. 16, 77–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Albis-Camps, M. and Blasczyk, R. (1999) Fluorotyping of HLA-DRB by sequence-specific priming and fluorogenic probing. Tissue Antigens 53, 301–307.PubMedCrossRefGoogle Scholar
  18. 18.
    Bartlett, S., Straub, J., Tonks, S., Wells, R. S., Bodmer, J. G., and Bodmer, W. F. (2001) Alkalinemediated differential interaction (AMDI): a simple automatable single-nucleotide polymorphism assay. Proc. Natl. Acad. Sci. USA 98, 2694–2697.PubMedCrossRefGoogle Scholar
  19. 19.
    Montanaro, L. and Arciola, C. R. (2002) Detection of the G_T polymorphism at the Sp1 binding site of the collagen type I alpha 1 gene by a novel ARMS-PCR method. Genet. Test. 6, 53–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Thong, M. K., Law, H. Y., and Ng, I. S. (1996) Molecular heterogeneity of beta-thalassaemia in Malaysia: a practical approach to diagnosis. Ann. Acad. Med. Singapore 25, 79–83.PubMedGoogle Scholar
  21. 21.
    Yandava, C. N., Zappulla, D. C., Korf, B. R., and Neufeld, E. J. (1996) ARMS test for diagnosis of factor VLeiden mutation, a common cause of inherited thrombotic tendency. J. Clin. Lab. Anal. 10, 414–417.PubMedCrossRefGoogle Scholar
  22. 22.
    Hezard, N., Cornillet, P., Droulle, C., Gillot, L., Potron, G., and Nguyen, P. (1997) Factor V Leiden: detection in whole blood by ASA PCR using an additional mismatch in antepenultimate position. Thromb. Res. 88, 59–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Bathelier, C., Champenois, T., and Lucotte, G. (1998) ARMS test for diagnosis of factor V Leiden mutation and allele frequencies in France. Mol. Cell. Probes 12, 121–123.PubMedCrossRefGoogle Scholar
  24. 24.
    Samuel, D., Beard, S., Yang, H., Saunders, N., and Jin, L. (2003) Genotyping of measles and mumps virus strains using amplification refractory mutation system analysis combined with enzyme immunoassay: a simple method for outbreak investigations. J. Med. Virol. 69, 279–285.PubMedCrossRefGoogle Scholar
  25. 25.
    Fan, X. Y., Hu, Z. Y., Xu, F. H., Yan, Z. Q., Guo, S. Q., and Li, Z. M. (2003) Rapid detection of rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates in shanghai by using the amplification refractory mutation system. J. Clin. Microbiol. 41, 993–997.PubMedCrossRefGoogle Scholar
  26. 26.
    Lio, D., Pes, G. M., Carru, C., et al. (2003) Association between the HLA-DR alleles and longevity: a study in Sardinian population. Exp. Gerontol. 38, 313–317.PubMedCrossRefGoogle Scholar
  27. 27.
    Ito, H., Sudo-Yamaji, A., Abe, M., Murase, T., and Tsubota, T. (2003) Sex identification by alternative polymerase chain reaction methods in falconiformes. Zool. Sci. 20, 339–344.PubMedCrossRefGoogle Scholar
  28. 28.
    Sasaki, Y., Fushimi, H., Cao, H., Cai, S. Q., and Komatsu, K. (2002) Sequence analysis of Chinese and Japanese curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication. Biol. Pharm. Bull. 25, 1593–1599.PubMedCrossRefGoogle Scholar
  29. 29.
    Wetton, J. H., Tsang, C. S., Roney, C. A., and Spriggs, A. C. (2002) An extremely sensitive speciesspecific ARMS PCR test for the presence of tiger bone DNA. Forensic Sci. Int. 126, 137–144.PubMedCrossRefGoogle Scholar
  30. 30.
    Pusch, C. M., Kayademir, T., Prangenberg, K., Conard, N. J., Czarnetzki, A., and Blin, N. (2002) Documenting ancient DNA quality via alpha satellite amplification and assessment of clone sequence diversity. J. Appl. Genet. 43, 351–364.PubMedGoogle Scholar
  31. 31.
    Steinborn, R., Schinogl, P., Wells, D. N., Bergthaler, A., Muller, M., and Brem, G. (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162, 823–829.PubMedGoogle Scholar
  32. 32.
    Bahar, A. Y., Taylor, P. J., Andrews, L., et al. (2001) The frequency of founder mutations in the BRCA1, BRCA2, and APC genes in Australian Ashkenazi Jews: implications for the generality of U.S. population data. Cancer 92, 440–445.PubMedCrossRefGoogle Scholar
  33. 33.
    Mouron, S. A., Abba, M. C., Guerci, A., Gomez, M. A., Dulout, F. N., and Golijow, C. D. (2000) Association between activated K-ras and c-erbB-2 oncogenes with “high-risk” and “low-risk” human papilloma virus types in preinvasive cervical lesions. Mutat. Res. 469, 127–134.PubMedGoogle Scholar
  34. 34.
    Friend, S., Borresen, A. L., Brody, L., et al. (1995) Breast cancer information on the web. Nature Genet. 11, 238–239.PubMedCrossRefGoogle Scholar
  35. 35.
    Struewing, J. P., Abeliovich, D., Peretz, T., et al. (1995) The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat. Genet. 11, 198–200.PubMedCrossRefGoogle Scholar
  36. 36.
    Shattuck-Eidens, D., McClure, M., Simard, J., et al. (1995) A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene. Implications for presymptomatic testing and screening. JAMA 273, 535–541.PubMedCrossRefGoogle Scholar
  37. 37.
    Scully, R., Chen, J., Plug, A., et al. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275.PubMedCrossRefGoogle Scholar
  38. 38.
    Eng, C. and Mulligan, L. M. (1997) Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and hirschsprung disease. Hum. Mutat. 9, 97–109.PubMedCrossRefGoogle Scholar
  39. 39.
    Low, E. O., Jones, A. M., Gibbins, J. R., and Walker, D. M. (2000) Analysis of the amplification refractory mutation allele-specific polymerase chain reaction system for sensitive and specific detection of p53 mutations in DNA. J. Pathol. 190, 512–515.PubMedCrossRefGoogle Scholar
  40. 40.
    Low, E. O., Gibbins, J. R., and Walker, D. M. (2000) In situ detection of specific p53 mutations in cultured cells using the amplification refractory mutation system polymerase chain reaction. Diagn. Mol. Pathol. 9, 210–220.PubMedCrossRefGoogle Scholar
  41. 41.
    Hsu, I. C., Metcalf, R. A., Sun, T., Welsh, J. A., Wang, N. J., and Harris, C. C. (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350, 427–428.PubMedCrossRefGoogle Scholar
  42. 42.
    Bressac, B., Kew, M., Wands, J., and Ozturk, M. (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429–431.PubMedCrossRefGoogle Scholar
  43. 43.
    Aguilar, F., Harris, C. C., Sun, T., Hollstein, M., and Cerutti, P. (1994) Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264, 1317–1319.PubMedCrossRefGoogle Scholar
  44. 44.
    Puisieux, A., Lim, S., Groopman, J., and Ozturk, M. (1991) Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res. 51, 6185–6189.PubMedGoogle Scholar
  45. 45.
    Aguilar, F., Hussain, S. P., and Cerutti, P. (1993) Aflatoxin B1 induces the transversion of G_T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl. Acad. Sci. USA 90, 8586–8590.PubMedCrossRefGoogle Scholar
  46. 46.
    Cerutti, P., Hussain, P., Pourzand, C., and Aguilar, F. (1994) Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res. 54, 1934s–1938s.PubMedGoogle Scholar
  47. 47.
    Staib, F., Hussain, S. P., Hofseth, L. J., Wang, X. W., and Harris, C. C. (2003) TP53 and liver carcinogenesis. Hum. Mutat. 21, 201–216.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Richard Kitching
    • 1
  • Arun Seth
    • 1
  1. 1.Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women’s College Health Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations