Advertisement

Dideoxyfingerprinting for Mutation Detection

  • Ioannis Bossis
  • Antonios Voutetakis
  • Constantine A. Stratakis
Protocol
  • 1.4k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Screening for mutations of the thousands of the sequence products provided by human genome analysis has proven to be a daunting task. The gold standard for identifying sequence alterations is direct sequencing. However, this method is labor- intensive and the least costeffective. Since the mid-1980s, the need for rapid, high-throughput, accurate, and economical mutation analysis systems has lead to the development of several technologies, as an alternative to analysis by direct sequencing, which allowed detection of single mutations in long stretches of DNA (200–600 bp). These techniques include restriction endonuclease digestion of polymerase chain reaction (PCR) products (PCR-RFLP), denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP), dideoxyfingerprinting (ddF), and heteroduplex mobility assay (HMA). Most of these methods utilize PCR for amplification of a region of the DNA, a physical or chemical treatment of amplified DNA (by restriction digestion or denaturation), separation of the amplicons by gel electrophoresis (by denaturing or nondenaturing), and visualization of the separated sequence strands (by autoradiography or fluorescence-based detection). Most recent modifications in some of these techniques allow the simultaneous separation and detection of DNA fragments with the use of sophisticated equipment such as high-performance liquid chromatography (HPLC) and capillary electrophoresis.

Keywords

Polymerase Chain Reaction Reaction Follicular Thyroid Carcinoma Isolate Growth Hormone Deficiency Myelin Protein Zero Heteroduplex Mobility Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.PubMedCrossRefGoogle Scholar
  2. 2.
    Sarkar, G., Yoon, H. S., and Sommer, S. S. (1992) Screening for mutations by RNA single-strand conformation polymorphism (rSSCP):comparison with DNA-SSCP. Nucleic Acids Res. 20(4), 871–878.PubMedCrossRefGoogle Scholar
  3. 3.
    Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. (1993) The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16(2), 325–332.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayashi, K. (1992) PCR-SSCP: a method for detection of mutations. Genet. Anal. Tech. Appl. 9(3), 73–79.PubMedGoogle Scholar
  5. 5.
    Spinardi, L., Mazars, R., and Theillet, C. (1991) Protocols for an improved detection of point mutations by SSCP. Nucleic Acids Res. 19(14), 4009.PubMedCrossRefGoogle Scholar
  6. 6.
    Sarkar, G., Yoon, H., and Sommer, S. S. (1992) Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics 13, 441–443.PubMedCrossRefGoogle Scholar
  7. 7.
    Qiang, L., Jinong, F., and Sommer, S. S. (1996) Bi-directional dideoxy fingerprinting (Bi-ddF): a rapid method for quantitative detection of mutations in genomic regions of 300–600 bp. Hum. Mol. Genet. 5(1), 107–114.CrossRefGoogle Scholar
  8. 8.
    Qiang, L., Weinshenker, B. G., Wingerchuk, D. M., and Sommer, S. S. (1998) Denaturation fingerprinting: two related mutation detection methods especially advantageous for high G+C regions. BioTechniques 24, 140–147.Google Scholar
  9. 9.
    Shevchenko, Y. O., Bale, S. J., and Compton, J. G. (1999) Mutation screening using automated bidirectional dideoxy fingerprinting. BioTechniques 28, 134–138.Google Scholar
  10. 10.
    Larsen, L. A., Johnson, M., Brown, C., et al. (2001) Automated mutation screening using dideoxy fingerprinting and capillary array electrophoresis. Hum. Mutat. 18, 451–457.PubMedCrossRefGoogle Scholar
  11. 11.
    Guru, S. C., Agarwal, S. K., Manickam, P., et al. (1997) A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res. 7(7), 725–735.PubMedGoogle Scholar
  12. 12.
    Larsen, L. A., Johnson, M., Brown, C., et al. (2001) Automated mutation screening using dideoxy fingerprinting and capillary array electrophoresis. Hum. Mutat. 18(5), 451–457.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, S. H., Warram, J. H., Krolewski, A. S., and Doria, A. (2001) Mutation screening of the neurogenin-3 gene in autosomal dominant diabetes. J. Clin. Endocrinol. Metab. 86(5), 2320–2322.PubMedCrossRefGoogle Scholar
  14. 14.
    Osborn, M., Cooper, D. N., and Upadhyaya, M. (2000) Molecular analysis of the 5′-flanking region of the neurofibromatosis type 1 (NF1) gene: identification of five sequence variants. Clin. Genet. 57(3), 221–224.PubMedCrossRefGoogle Scholar
  15. 15.
    Bektas, A., Warram, J. H., White, M. F., Krolewski, A. S., and Doria, A. (1999) Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. Diabetes 48(3), 640–642.PubMedCrossRefGoogle Scholar
  16. 16.
    Jeong, M. C., Navani, A., and Oksenberg, J. R. (1998) Limited allelic polymorphism in the human interleukin-3 gene. Mol. Cell. Probes 12(1), 49–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Sobell, J. L., Lind, T. J., Hebrink, D. D., Heston, L. L., and Sommer, S. S. (1997) Screening the monoamine oxidase B gene in 100 male patients with schizophrenia: a cluster of polymorphisms in African-Americans but lack of functionally significant sequence changes. Am. J. Med. Genet. 74(1), 44–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, Q., Sobell, J. L., Heston, L. L., and Sommer, S. S. (1995) Screening the dopamine D1 receptor gene in 131 schizophrenics and eight alcoholics: identification of polymorphisms but lack of functionally significant sequence changes. Am. J. Med. Genet. 60(2), 165–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Sobell, J. L., Lind, T. J., Sigurdson, D. C., et al. (1995) The D5 dopamine receptor gene in schizophrenia: identification of a nonsense change and multiple missense changes but lack of association with disease. Hum. Mol. Genet. 4(4), 507–514.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu, W. S. and McClain, K. L. (1997) DNA polymorphisms and mutations of the tumor necrosis factor-alpha (TNF-alpha) promoter in Langerhans cell histiocytosis (LCH). J. Interferon Cytokine Res. 17(10), 631–635.PubMedCrossRefGoogle Scholar
  21. 21.
    Prezant, T. R., Levine, J., and Melmed, S. (1998) Molecular characterization of the men1 tumor suppressor gene in sporadic pituitary tumors. J. Clin. Endocrinol. Metab. 83(4), 1388–1391.PubMedCrossRefGoogle Scholar
  22. 22.
    Debelenko, L. V., Brambilla, E., Agarwal, S. K., et al. (1997) Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum. Mol. Genet. 6(13), 2285–2290.PubMedCrossRefGoogle Scholar
  23. 23.
    Grebe, S. K., McIver, B., Hay, I. D., et al. (1997) Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 82(11), 3684–3691.PubMedCrossRefGoogle Scholar
  24. 24.
    Lancaster, J. M., Berchuck, A., Futreal, P. A., and Wiseman, R. W. (1997) Dideoxy fingerprinting assay for BRCA1 mutation analysis. Mol. Carcinog. 19(3), 176–179.PubMedCrossRefGoogle Scholar
  25. 25.
    Durocher, F., Tonin, P., Shattuck-Eidens, D., Skolnick, M., Narod, S. A., and Simard, J. (1996) Mutation analysis of the BRCA1 gene in 23 families with cases of cancer of the breast, ovary, and multiple other sites. J. Med. Genet. 33(10), 814–819.PubMedCrossRefGoogle Scholar
  26. 26.
    Blaszyk, H., Hartmann, A., Schroeder, J. J., McGovern, R. M., Sommer, S. S., and Kovach, J. S. (1995) Rapid and efficient screening for p53 gene mutations by dideoxy fingerprinting. Biotechniques 18(2), 256–260.PubMedGoogle Scholar
  27. 27.
    Goebel SU, Heppner C, Burns AL, et al. (2000) Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J. Clin. Endocrinol. Metab. 85(1), 116–123.PubMedCrossRefGoogle Scholar
  28. 28.
    Jorge, B. H., Agarwal, S. K., Lando, V. S., et al. (2001) Study of the multiple endocrine neoplasia type 1, growth hormone-releasing hormone receptor, Gs alpha, and Gi2 alpha genes in isolated familial acromegaly. J. Clin. Endocrinol. Metab. 86(2), 542–544.PubMedCrossRefGoogle Scholar
  29. 29.
    Mastaglia, F. L., Nowak, K.J., Stell, R., et al. (1999) Novel mutation in the myelin protein zero gene in a family with intermediate hereditary motor and sensory neuropathy. J. Neurol. Neurosurg. Psychiatry 67(2), 174–179.PubMedCrossRefGoogle Scholar
  30. 30.
    Gronskov, K., Rosenberg, T., Sand, A., and Brondum-Nielsen, K. (1999) Mutational analysis of PAX6: 16 novel mutations including 5 missense mutations with a mild aniridia phenotype. Eur. J. Hum. Genet. 7(3), 274–286.PubMedCrossRefGoogle Scholar
  31. 31.
    Miyata, I., Eto, Y., Kamijo, T., Ogawa, M., Futrakul, A., and Phillips, J. A., 3rd. (1999) Screening for mutations in the GH-1 gene by dideoxy fingerprinting (ddF). Endocr. J. 46(Suppl.), S71–S74.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyata, I., Cogan, J. D., Prince, M. A., Kamijo, T., Ogawa, M., and Phillips, J. A., 3rd. (1997) Detection of growth hormone gene defects by dideoxy fingerprinting (ddF). Endocr. J. 44(1), 149–154.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin, S. W., Lin, S. R., and Shen, M. C. (1993) Characterization of genetic defects of hemophilia A in patients of Chinese origin. Genomics 18(3), 496–504.PubMedCrossRefGoogle Scholar
  34. 34.
    Thorland EC, Weinshenker BG, Liu JZ, et al. (1995) Molecular epidemiology of factor IX germline mutations in Mexican Hispanics: pattern of mutation and potential founder effects. Thromb. Haemost. 74(6), 1416–1422.PubMedGoogle Scholar
  35. 35.
    Puck, J. M., Pepper, A. E., Henthorn, P. S., et al. (1997) Mutation analysis of IL2RG in human Xlinked severe combined immunodeficiency. Blood 89(6), 1968–1977.PubMedGoogle Scholar
  36. 36.
    Li, P., Thompson, J. N., Wang, X., and Song, L. (1998) Analysis of common mutations and associated haplotypes in Chinese patients with glucose-6-phosphate dehydrogenase deficiency. Biochem. Mol. Biol. Int. 46(6), 1135–1143.PubMedGoogle Scholar
  37. 37.
    Stratakis, C. A., Orban, Z., Burns, A. L., et al. (1996) Dideoxyfingerprinting (ddF) analysis of the type X collagen gene (COL10A1) and identification of a novel mutation (S671P) in a kindred with Schmid metaphyseal chondrodysplasia. Biochem. Mol. Med. 59(2), 112–117.PubMedCrossRefGoogle Scholar
  38. 38.
    Fox, S. A., Lareu, R. R., and Swanson, N. R. (1995) Rapid genotyping of hepatitis C virus isolates by dideoxy fingerprinting. J. Virol. Methods 53(1), 1–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Lebech, A. M. (2002) Polymerase chain reaction in diagnosis of Borrelia burgdorferi infections and studies on taxonomic classification. APMIS 105 (Suppl.), 1–40.Google Scholar
  40. 40.
    Liu, Y. C., Huang, T. S., Huang, W. K., Chen, C. S., and Tu, H. Z. (1998) Dideoxy fingerprinting for rapid screening of rpoB gene mutations in clinical isolates of Mycobacterium tuberculosis. J. Formos. Med. Assoc. 97(6), 400–404.PubMedGoogle Scholar
  41. 41.
    Zhu, X., Bogh, H., and Gasser, R. B. (1999) Dideoxy fingerprinting of low-level nucleotide variation in mitochondrial DNA of the human blood fluke, Schistosoma japonicum. Electrophoresis 20(14), 2830–2833.PubMedCrossRefGoogle Scholar
  42. 42.
    Gasser, R. B., Zhu, X., and McManus, D. P. (1998) Dideoxy fingerprinting: application to the genotyping of Echinococcus. Int. J. Parasitol. 28(11), 1775–1779.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhu, X. Q. and Gasser, R. B. (1998) Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes. Electrophoresis 19(8–9), 1366–1373.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Ioannis Bossis
    • 1
  • Antonios Voutetakis
    • 2
  • Constantine A. Stratakis
    • 1
  1. 1.Developmental Endocrinology Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesda
  2. 2.National Institute for Dental and Craniofacial ResearchNational Institutes of Health

Personalised recommendations