Advertisement

Biosynthesis and Analysis of Bilins

  • Matthew J. Terry
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The term bilin is a collective one to describe a broad group of open chain tetrapyrroles and derives from the name “bile pigments” as the first of these compounds to be characterized were isolated from animal bile. These bilins, biliverdin (BV) and bilirubin (BR), are the sequential products of heme degradation (their green and yellow pigmentation can be detected during the discoloration of a bruise), with BR being conjugated to glucuronic acid to expedite excretion. The structures of BV and BR are shown in Figure 1, and their biochemistry is still the best understood of the bilins today. However, we now know that there is a great diversity of naturally occurring bilins that have a wide range of different functions. In cyanobacteria and two groups of algae, the rhodophytes (red algae) and the cryptomonads, a tremendous variety of bilins are utilized for light harvesting through covalent attachment to the phycobiliproteins, which comprise the photosynthetic apparatus of these organisms (25,26).
Figure 1.

Chemical structures of the major bilins.

Keywords

Heme Oxygenase Dimethyl Ester Heme Oxygenase Activity Longe Wavelength Peak Affinity Chromatography Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arciero, D.M., D.A. Bryant, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J. Biol. Chem. 263:18343–18349.PubMedGoogle Scholar
  2. 2.
    Arciero, D.M., J.L. Dallas, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. J. Biol. Chem. 263:18350–18357.PubMedGoogle Scholar
  3. 3.
    Arciero, D.M., J.L. Dallas, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. III. Properties of the phycoerythrobilin adduct. J. Biol. Chem. 263:18358–18363.PubMedGoogle Scholar
  4. 4.
    Austin, C.C. and K.W. Jessing. 1994. Green-blood pigmentation in lizards. Comp. Biochem. Physiol. 109A:619–626.CrossRefGoogle Scholar
  5. 5.
    Beale, S.I. 1993. Biosynthesis of phycobilins. Chem. Rev. 93:785–802.CrossRefGoogle Scholar
  6. 6.
    Beale, S.I. and J. Cornejo. 1984. Enzymic Transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga Cyanidium caldarium. Plant Physiol. 76:7–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Beale, S.I. and J. Cornejo. 1984. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch. Biochem. Biophys. 235:371–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J. Biol. Chem. 266:22328–22332.PubMedGoogle Scholar
  9. 9.
    Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J. Biol. Chem. 266:22333–22340.PubMedGoogle Scholar
  10. 10.
    Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. 15,16-dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J. Biol. Chem. 266:22341–22345.PubMedGoogle Scholar
  11. 11.
    Brockmann, H., Jr. and G. Knobloch. 1973. Die absolute Konfiguration des 2E-Äthyliden-3-methyl-succinimids. Ein Beitrag zur Bestimmung der absoluten Konfiguration von Phycobilinen und Phytochrom. Chem. Ber. 106:803–811.CrossRefGoogle Scholar
  12. 12.
    Chapman, D.J., W.J. Cole, and H.W. Siegelman. 1967. The structure of phycoerythrobilin. J. Am. Chem. Soc. 89:5976–5977.CrossRefGoogle Scholar
  13. 13.
    Cole, W.J., D.J. Chapman, and H.W. Siegelman. 1967. The structure of phycocyanobilin. J. Am. Chem. Soc. 89:3643–3645.CrossRefGoogle Scholar
  14. 14.
    Cole, W.J., D.J. Chapman, and H.W. Siegelman. 1968. The structure and properties of phycocyanobilin and related bilatrienes. Biochem. 7:2929–2935.CrossRefGoogle Scholar
  15. 15.
    Cornejo, J. and S.I. Beale. 1997. Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosyn. Res. 51:223–230.CrossRefGoogle Scholar
  16. 16.
    Cornejo, J. and S.I. Beale. 1988. Algal heme oxygenase from Cyanidium caldarium. Partial purification and fractionation into three required protein components. J. Biol. Chem. 263:11915–11921.PubMedGoogle Scholar
  17. 17.
    Cornejo, J., S.I. Beale, M.J. Terry, and J.C. Lagarias. 1992. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins. J. Biol. Chem. 267:14790–14798.PubMedGoogle Scholar
  18. 18.
    Cornejo, J., R.D. Willows, and S.I. Beale. 1998. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J. 15:99–107.PubMedCrossRefGoogle Scholar
  19. 19.
    Crespi, H.L., L.J. Boucher, G.D. Norman, J.J. Kate, and R.C. Dougherty. 1967. Structure of phycocyanobilin. J. Am. Chem. Soc. 89:3642–3643.CrossRefGoogle Scholar
  20. 20.
    Crespi, H.L. and J.J. Kate. 1969. Exchangeable hydrogen in phycoerythrobilin. Phytochem. 8:759–761.CrossRefGoogle Scholar
  21. 21.
    Davis, S.J., J. Kurepa, and R.D. Vierstra. 1999. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl. Acad. Sci. USA 96:6541–6546.PubMedCrossRefGoogle Scholar
  22. 22.
    Elich, T.D., A.F. McDonagh, LA. Palma, and J.C. Lagarias. 1989. Phytochrome chromophore biosynthesis. Treatment of tetrapyrrole-deficient Avena explants with natural and non-natural bilatrienes leads to formation of spectrally active holoproteins. J. Biol. Chem. 264:183–189.PubMedGoogle Scholar
  23. 23.
    Fang, L.-S. and J.L. Bada. 1990. The blue-green blood plasma of marine fish. Comp. Biochem. Physiol. 97B:37–45.Google Scholar
  24. 24.
    Fu, E., L. Friedman, and H.W. Siegelman. 1979. Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. Biochem. J. 179: 1–6.PubMedGoogle Scholar
  25. 25.
    Glazer, A.N. 1989. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264:1–4.PubMedGoogle Scholar
  26. 26.
    Glazer, A.N. and G.J. Wedemayer. 1995. Cryptomonad biliproteins—an evolutionary perspective. Photosyn. Res. 46:93–105.CrossRefGoogle Scholar
  27. 27.
    Goodman, W.G., B. Adams, and J.T. Trost. 1985. Purification and characterization of a biliverdin-associated protein from the hemolymph of Manduca Sexta. Biochem. 24:1168–1175.CrossRefGoogle Scholar
  28. 28.
    Gossauer, A. and W. Hirsch. 1974. Totalsynthese des racemischen Phycocyanobilins (Phycobiliverdins) sowie eines “Homophycobiliverdins”. Liebigs Ann. Chem. 1974:1496–1513.CrossRefGoogle Scholar
  29. 29.
    Gossauer, A. and J.-P. Weller. 1978. Chemical total synthesis of (+)-(2R, 16R)-and (+)-(2R, 16R)-phycoery-throbilin dimethyl ester. J. Am. Chem. Soc. 100:5928–5933.CrossRefGoogle Scholar
  30. 30.
    Kakiuchi, T., H. Kato, K.P. Jayasundera, T. Higashi, K. Watabe, D. Sawamoto, H. Kinoshita, and K. Inomata. 1998. Total syntheses of (±)-phycocyanobilin and its derivatives bearing a photoreactive group at Dring. Chem. Lett. 1998:1001–1002.CrossRefGoogle Scholar
  31. 31.
    Kennedy, G.Y. and H.G. Vevers. 1976. A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B:117–123.Google Scholar
  32. 32.
    Kutty, R.K. and M.D. Maines. 1981. Purification and characterization of biliverdin reductase from rat liver. J. Biol. Chem. 256:3956–3962.PubMedGoogle Scholar
  33. 33.
    Lagarias, D.M., M.W. Crepeau, M.O. Maines, and J.C. Lagarias. 1997. Regulation of photomorphogenesis by expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Cell 9:675–688.PubMedCrossRefGoogle Scholar
  34. 34.
    Maines, M.D. 1988. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2:2557–2568.PubMedGoogle Scholar
  35. 35.
    Malnes, M.D., N.G. Ibrahim, and A. Kappas. 1977. Solubilization and partial purification of heme oxygenase from rat liver. J. Biol. Chem. 252:5900–5903.Google Scholar
  36. 36.
    McDonagh, A.F. and F. Assisi. 1971. Commercial bilirubin: a trinity of isomers. FEBS Lett. 18:315–317.PubMedCrossRefGoogle Scholar
  37. 37.
    McDonagh, A.F. and L.A. Palma. 1980. Preparation and properties of crystalline biliverdin IXoc. Simple methods for preparing isomerically homogenous biliverdin and (14C) biliverdin by using 2,3-dichloro-5,6-dicyanobenzoquinone. Biochem. J. 189:193–208.PubMedGoogle Scholar
  38. 38.
    McDowell, M.D. and J.C. Lagarias. 1997. Partial purification, photoaffinity labeling, and characterization of phytochromobilin synthase. Plant Physiol. 114:S739.Google Scholar
  39. 39.
    Muramoto, T., T. Kohchi, A. Yokota, I. Hwang, and H.M. Goodman. 1999. The Arabidopsis photomorphogenic mutant hyl is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347.PubMedCrossRefGoogle Scholar
  40. 40.
    Murphy, J.T. and J.C. Lagarias. 1997. The phytofluors: a new class of fluorescent protein probes. Curr. Biol. 7:870–876.PubMedCrossRefGoogle Scholar
  41. 41.
    Oren, D.A. 1997. Bilirubin, rem sleep, and photo-transduction of environmental time cues. A Hypothesis. Chronobiol. Int. 14:319–329.PubMedCrossRefGoogle Scholar
  42. 42.
    Ortiz de Montellano, P.R. 1998. Heme oxygenase mechanism: evidence for an electrophilic, ferric peroxide species. Acc. Chem. Res. 31:543–549.CrossRefGoogle Scholar
  43. 43.
    Prince, J., T.G. Nolen, and L. Coelho. 1998. Defensive ink pigment processing and secretion in Aplysia californica: concentration and storage of phycoerythrobilin in the ink gland. J. Exp. Biol. 207:1595–1613.Google Scholar
  44. 44.
    Provasoli, L., J.J.A. McLaughlin, and M.R. Droop. 1957. The development of artificial media for marine algae. Archiv. Mikrobiol. 25:392–428.CrossRefGoogle Scholar
  45. 45.
    Rhie, G. and S.I. Beale. 1992. Biosynthesis of Phycobilins. Ferredoxin-supported NADPH-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J. Biol. Chem. 267:16088–16093.PubMedGoogle Scholar
  46. 46.
    Rhie, G. and S.I. Beale. 1995. Phycobilin biosynthesis: reductant requirements and product identification for heme oxygenase from Cyanidium caldarium. Arch. Biochem. Biophys. 320:182–194.PubMedCrossRefGoogle Scholar
  47. 47.
    Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, and R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1–61.Google Scholar
  48. 48.
    Ryter, S., E. Kvam, and R.M. Tyrell. 1999. Heme oxygenase activity determination by high-performance liquid chromatography. Methods Enzymol. 300:322–336.PubMedCrossRefGoogle Scholar
  49. 49.
    Schluchter, W.M. and A.N. Glazer. 1997. Characterization of cyanobacterial biliverdin reductase. J. Biol. Chem. 272:13562–13569.PubMedCrossRefGoogle Scholar
  50. 50.
    Singleton, J.W. and L. Laster. 1965. Biliverdin reductase of guinea pig liver. J. Biol. Chem. 240:4780–4789.PubMedGoogle Scholar
  51. 51.
    Stocker, R., Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames. 1987. Science 235:1043–1046.PubMedCrossRefGoogle Scholar
  52. 52.
    Stoll, M.S. and C.H. Gray. 1977. The preparation and characterization of bile pigments. Biochem. J. 163:59–101.PubMedGoogle Scholar
  53. 53.
    Tenhunen, R., H.S. Marver, and R. Schmid. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61:748–755.PubMedCrossRefGoogle Scholar
  54. 54.
    Terry M.J. and R.E. Kendrick. 1996. The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J. Biol. Chem. 271:21681–21686.PubMedCrossRefGoogle Scholar
  55. 55.
    Terry, M.J. and J.C. Lagarias. 1991. Holophytochrome assembly. Coupled assay for phytochromobilin synthesis in organello. J. Biol. Chem. 266:22215–22221.PubMedGoogle Scholar
  56. 56.
    Terry, M.J., M.D. Maines, and J.C. Lagarias. 1993. Inactivation of phytochrome-and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J. Biol. Chem. 268:26099–26106.PubMedGoogle Scholar
  57. 57.
    Terry, M.J., M.D. McDowell, and J.C. Lagarias. 1995. (3Z)-and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J. Biol. Chem. 270:11111–11119.PubMedCrossRefGoogle Scholar
  58. 58.
    Terry M.J., J.A. Wahleithner, and J.C. Lagarias. 1993. Biosynthesis of the plant photoreceptor phytochrome. Arch. Biochem. Biophys. 306:1–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Turner, L., J.D. Houghton, and S.B. Brown. 1992. Isolation and partial purification of phycocyanin apoprotein and its role in studies of bilin-apoprotein attachment. Plant Physiol. Biochem. 30:309–314.Google Scholar
  60. 60.
    Vreman, H.J., D.A. Cipkala, and D.K. Stevenson. 1996. Characterization of porphyrin heme oxygenase inhibitors. Can. J. Physiol. Pharmacol. 74:278–285.PubMedCrossRefGoogle Scholar
  61. 61.
    Vreman, HJ. and D.K. Stevenson. 1988. Heme oxygenase activity as measured by carbon monoxide production. Anal. Biochem. 168:31–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Weller, J.L., M.J. Terry, C. Rameau, J.B. Reid, and R.E. Kendrick. 1996. The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IXα. Plant Cell 8:55–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Weller, J.-P. and A. Gossauer. 1980. Synthese und photoisomerisierung des racem. Phytochromobilin-dimethylesters. Chem. Ber. 113:1603–1611.CrossRefGoogle Scholar
  64. 64.
    Wilks, A. and P.R. Ortiz de Montellano. 1993. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J. Biol. Chem. 268:22357–22362.PubMedGoogle Scholar
  65. 65.
    Wilks, A. and M.P. Schmitt. 1998. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J. Biol. Chem. 273:837–841.PubMedCrossRefGoogle Scholar
  66. 66.
    Wu, S.-H. and J.C. Lagarias. 1996. The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome. Proc. Nad. Acad. Sci. USA 93:8989–8994.CrossRefGoogle Scholar
  67. 67.
    Wu, S.-H., M.T. McDowell, and J.C. Lagarias. 1997. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J. Biol. Chem. 272:25700–25705.PubMedCrossRefGoogle Scholar
  68. 68.
    Yamaguchi, T., Y. Komoda, and H. Nakajima. 1994. Biliverdin-IXβ and biliverdin IXα reductase from human liver. J. Biol. Chem. 269:24343–24348.PubMedGoogle Scholar
  69. 69.
    Yoshida, T. and G. Kikuchi. 1978. Features of the reaction of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 253:4230–4236.PubMedGoogle Scholar
  70. 70.
    Yoshida, T., M. Noguchi, and G. Kikuchi. 1982. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 257:9345–9348.PubMedGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Matthew J. Terry
    • 1
  1. 1.University of SouthamptonSouthamptonEngland, UK

Personalised recommendations