Advertisement

Analysis and Reconstitution of Chlorophyll-Proteins

  • Harald Paulsen
  • Volkmar H. R. Schmid
Protocol
  • 4.8k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

It is hard to believe that only some 30 years ago, it was a matter of debate whether chlorophyll (Chl) and other photosynthesis pigments are protein-bound or just dissolved in plant membranes. Philip Thornber, who vividly described this debate in his recollection of photosynthesis research in the 1960s (90), was one of the exponents who finally convinced their colleagues that most, if not all, Chl in plants is in fact organized in protein complexes. It was his laboratory that devised quite a number of chromatographic and electrophoretic techniques for isolating (bacterio)chlorophyll-containing complexes from bacteria and plants. These isolation techniques later paved the way for structural analyses of, e.g., photosynthetic reaction centers of purple bacteria (24) as well as bacterial (53) and plant (49) light-harvesting complexes (LHC).

Keywords

Purple Bacterium Sucrose Density Gradient Detergent Solution Circular Dichroism Signal Lithium Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alfonso, M., G. Montoya, R. Cases, R. Rodriguez, and R. Picorel. 1994. Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33:10494–10500.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen, K.D. and L.A. Staehelin. 1991. Resolution of 16 to 20 chlorophyll protein complexes using a low ionic strength native green gel system. Anal. Biochem. 194:214–222.PubMedCrossRefGoogle Scholar
  3. 3.
    Allen, K.D. and L.A. Staehelin. 1992. Biochemical characterization of photosystem-II antenna polypeptides in grana and stroma membranes of spinach. Plant Physiol. 100:1517–1526.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, J.M., J.C. Waldron, and S.W. Thorne. 1978. Chlorophyll-protein complexes of spinach and barley thylakoids. FEBS Lett. 52:227–233.CrossRefGoogle Scholar
  5. 5.
    Bassi, R., B. Pineau, P. Dainese, and J. Marquardt. 1993. Carotenoid-binding proteins of photosystem II. Eur. J. Biochem. 272:297–303.CrossRefGoogle Scholar
  6. 6.
    Bassi, R. and D. Simpson. 1987. Chlorophyll-protein complexes of barley photosystem I. Eur. J. Biochem. 763:221–230.CrossRefGoogle Scholar
  7. 7.
    Boekema, E.J., H. van Roon, F. Calkoen, R. Bassi, and J.P. Dekker. 1999. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239.PubMedCrossRefGoogle Scholar
  8. 8.
    Booth, P.J. and H. Paulsen. 1996. Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements. Biochemistry 35:5103–5108.PubMedCrossRefGoogle Scholar
  9. 9.
    Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  10. 10.
    Büchel, C. and G. Garab. 1997. Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (Xantho-phyceae): characterization with circular dichroism and absorbance spectroscopy. J. Photochem. Photobiol. B Biol. 37:118–124.CrossRefGoogle Scholar
  11. 11.
    Büchel, C. and C. Wilhelm. 1993. Isolation and characterization of a photosystem I-associated antenna (LHC I) and a photosystem I-core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae). J. Photochem. Photobiol. B Biol. 20:87–93.CrossRefGoogle Scholar
  12. 12.
    Bujard, H., R. Gentz, M. Lanzer, D. Stueber, M. Mueller, I. Ibrahimi, M.T. Haeuptle, and B. Dob-berstein. 1987. A T5-promoter-based transcription-translation system for the analysis of protein expression in vivo and in vitro. Methods Enzymol. 155:416–433.PubMedCrossRefGoogle Scholar
  13. 13.
    Burke, J.J., C.L. Ditto, and C.J. Arntzen. 1978. Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Arch. Biochem. Biophys. 187:252–263.PubMedCrossRefGoogle Scholar
  14. l4.
    Butler, P.J.G. and W. Kühlbrandt. 1988. Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes. Proc. Natl. Acad. Sci. USA 85:3797–3801.PubMedCrossRefGoogle Scholar
  15. 15.
    Camm, EX. and B.R. Green. 1980. Fractionation of thylakoid membranes with the nonionic detergent octyl-β-D-glucopyranoside. Plant Physiol. 66:428–432.PubMedCrossRefGoogle Scholar
  16. 16.
    Camm, E.L. and B.R. Green. 1982. The effects of cations and trypsin on extraction of chlorophyll-protein complexes by octyl glucoside. Arch. Biochem. Biophys. 214:563–572.PubMedCrossRefGoogle Scholar
  17. 17.
    Cammarata, K.V., F. Plumley, and G.W. Schmidt. 1990. Reconstitution of light-harvesting complexes: a single apoprotein binds Chla, Chlb and xanthophylls, p. 341–344. In M. Baltscheffsky (Ed.), Current Research in Photosynthesis, Vol. 2. Kluwer Academic Publishers, Dordrecht.Google Scholar
  18. 18.
    Cammarata, K.V. and G.W. Schmidt. 1992. In-vitro reconstitution of a light-harvesting gene product—deletion mutagenesis and analyses of pigment binding. Biochemistry 37:2779–2789.CrossRefGoogle Scholar
  19. 19.
    Clayton, R.K. and B.J. Clayton. 1981. B 850 pigment—protein complex of Rhodopseudomonas sphaeroides. Extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc. Natl. Acad. Sci. USA 78:5583–5587.PubMedCrossRefGoogle Scholar
  20. 20.
    Dainese, P. and R. Bassi. 1991. Subunit stoichiom-etry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J. Biol. Chem. 266: 8136–8142.PubMedGoogle Scholar
  21. 21.
    Dainese, P., G. Hoyer-Hansen, and R. Bassi. 1990. The resolution of chlorophyll a/b-binding proteins by a preparative method based on flat bed isoelectric focusing. Photochem. Photobiol. 51:693–703.Google Scholar
  22. 22.
    Davies, B.H. 1965. Analysis of carotenoid pigments, p. 489–532. In T.W Goodwin (Ed.), Chemistry and Biochemistry of Plant Pigments. Academic Press, New York.Google Scholar
  23. 23.
    Davies, B.H. 1976. Carotenoids, p. 38–165. In T.W. Goodwin (Ed.), Chemistry and Biochemistry of Plant Pigments, Vol. 2. Academic Press, London.Google Scholar
  24. 24.
    Deisenhofer, J., O. Epp, K. Mild, R. Huber, and H. Michel. 1985. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624.CrossRefGoogle Scholar
  25. 25.
    Delepelaire, P. and N.H. Chua. 1981. Electrophoretic purification of chlorophyll a/b protein complexes from Chlamydomonas reinhardtii and spinach and analysis of their polypeptides. J. Biol. Chem. 256:9300–9307.PubMedGoogle Scholar
  26. 26.
    Douady, D., B. Rousseau, and L. Caron. 1994. Fucox-anthin chlorophyll a/c light-harvesting complexes of Laminaria saccharina — partial amino acid sequences and arrangement in thylakoid membranes. Biochemistry 33:3165–3170.PubMedCrossRefGoogle Scholar
  27. 27.
    Durnford, D.G. and B.R. Green. 1994. Characterization of the light harvesting proteins of the chromophytic alga, Olisthodiscus luteus (Heterosigma carterae). Biochim. Biophys. Acta 1184:118–126.CrossRefGoogle Scholar
  28. 28.
    Flachmann, R. and W. Kühlbrandt. 1996. Crystallization and identification of an assembly defect of recombinant antenna complexes produced in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 93:14966–14971.PubMedCrossRefGoogle Scholar
  29. 29.
    Francis, G.W., B. Huseby, and O.M. Andersen. 1993. An improved HPLC system for the analysis of photo-synthetic pigments. Chromatographia 35:189–192.CrossRefGoogle Scholar
  30. 30.
    Fromme, P., H.T. Witt, W.D. Schubert, O. Klukas, W. Saenger, and N. Krauss. 1996. Structure of photosystem I at 4.5 angstrom resolution: a short review including evolutionary aspects. Biochim. Biophys. Acta 1275:76–83.CrossRefGoogle Scholar
  31. 31.
    Funk, C., W.P. Schröder, A. Napiwotzki, S.E. Tjus, G. Renger, and B. Andersson. 1995. The PSII-S protein of higher plants: a new type of pigment-binding protein. Biochemistry 34:11133–11141.PubMedCrossRefGoogle Scholar
  32. 32.
    Gantt, E., F.X. Cunningham, B. Grabowski, and S. Tan. 1998. Relatedness of caroteno-chlorophyll antenna complexes in algae and plants, p. 239–247. In G. Garab (Ed.), Photosynthesis: Mechanism and Effects, Vol. I. Kluwer Academic Publishers, Dordrecht.Google Scholar
  33. 33.
    Garab, G., J. Kieleczawa, J.C. Sutherland, C. Busta-mante, and G. Hind. 1991. Organization of pigment—protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem. Photobiol. 54:273–281.CrossRefGoogle Scholar
  34. 34.
    Gilmore, A.M. and H.Y. Yamamoto. 1991. Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J. Chromatogr. 543:137–145.CrossRefGoogle Scholar
  35. 35.
    Giuffra, E., D. Cugini, R. Croce, and R. Bassi. 1996. Reconstitution and pigment-binding properties of recombinant CP29. Eur. J. Biochem. 238:112–120.PubMedCrossRefGoogle Scholar
  36. 36.
    Goldsmith, J.O. and S.G. Boxer. 1996. Rapid isolation of bacterial photosynthetic reaction centers with an engineered poly-histidine tag. Biochim. Biophys. Acta 1276:171–175.CrossRefGoogle Scholar
  37. 37.
    Hankamer, B., J. Nield, D. Zheleva, E. Boekema, S. Jansson, and J. Barber. 1997. Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur. J. Biochem. 243:422–429.PubMedCrossRefGoogle Scholar
  38. 38.
    Haworth, P., J.L. Watson, and C.J. Arntzen. 1983. The detection, isolation, and characterisation of a light-harvesting complex which is specifically associated with photosystem I. Biochim. Biophys. Acta 724:151–158.CrossRefGoogle Scholar
  39. 39.
    Hiller, R.G., C.D. Scaramuzzi, and J. Breton. 1992. The organisation of photosynthetic pigments in a Cryptophyte alga — a linear dichroism study. Biochim. Biophys. Acta 1102:360–364.CrossRefGoogle Scholar
  40. 40.
    Hobe, S., R. Förster, J. Klingler, and H. Paulsen. 1995. N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34:10224–10228.PubMedCrossRefGoogle Scholar
  41. 41.
    Hobe, S., S. Prytulla, W. Kühlbrandt, and H. Paulsen. 1994. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J. 13:3423–3429.PubMedGoogle Scholar
  42. 42.
    Iriyama, K., N. Ogura, and A. Takamiya. 1974. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J. Biochem. 76:901–904.PubMedGoogle Scholar
  43. 43.
    Kamimura, Y., T. Mori, T. Yamasaki, and S. Katoh. 1997. Isolation, properties and a possible function of a water soluble chlorophyll a/b protein from Brussels sprouts. Plant Cell Physiol. 38:133–138.PubMedGoogle Scholar
  44. 44.
    Kan, K.S. and J.P. Thornber. 1976. The light-harvesting chlorophyll a/b-protein of Chlamydomonas reinhardtii. Plant Physiol. 57:47–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Knötzel, J., I. Svendsen, and D.J. Simpson. 1992. Identification of the photosystem-I antenna polypeptides in barley — isolation of 3 pigment-binding antenna complexes. Eur. J. Biochem. 206:209–215.CrossRefGoogle Scholar
  46. 46.
    Krupa, Z., N.RA. Huner, J.P. Williams, E. Maissan, and D.R. James. 1987. Development at cold-hardening temperatures. The structure and composition of purified rye light harvesting complex II. Plant Physiol. 84:19–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Kügler, M., L. Jansch, V. Kruft, U.K. Schmite, and H.P. Braun. 1997. Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynth. Res. 53:35–44.CrossRefGoogle Scholar
  48. 48.
    Kühlbrandt, W. 1984. Three-dimensional structure of the light-harvesting chlorophyll a/b-piotein complex. Nature 307:478–480.CrossRefGoogle Scholar
  49. 49.
    Kühlbrandt, W., D.N. Wang, and Y. Fujiyoshi. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621.PubMedCrossRefGoogle Scholar
  50. 50.
    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  51. 51.
    Lam, E., W. Ortiz, and R. Malkin. 1984. Chlorophyll a/b proteins of photosystem I. FEBS Lett. 168:10–14.CrossRefGoogle Scholar
  52. 52.
    Martinsonx, TA. and E.G. Plumley. 1995. One-step extraction and concentration of pigments and acyl lipids by sec-butanol from in vitro and in vivo samples. Anal. Biochem. 228:123–130.CrossRefGoogle Scholar
  53. 53.
    McDermott, G., S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs. 1995. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521.CrossRefGoogle Scholar
  54. 54.
    Meyer, M. and C. Wilhelm. 1993. Reconstitution of light-harvesting complexes from Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasino-phyceae). Z. Naturforsch. C 48:461–473.Google Scholar
  55. 55.
    Meyer, M., C. Wilhelm and G. Garab. 1996. Pigment-pigment interactions and secondary structure of reconstituted algal chlorophyll a/b-binding light-harvesting complexes of Chlorella fusca with different pigment compositions and pigment-protein stoichiometries. Photosynth. Res. 49:71–81.CrossRefGoogle Scholar
  56. 56.
    Mullet, J.E. and C.J. Arntzen. 1980. Simulation of grana stacking in a model membrane system. Mediation by a purified light-harvesting pigment-protein complex from chloroplasts. Biochim. Biophys. Acta 589:100–117.PubMedCrossRefGoogle Scholar
  57. 57.
    Mullet, J.E., J.J. Burke, and C.J. Arntzen. 1980. Chlorophyll proteins of photosystem I. Plant Physiol. 65:814–822.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagai, K. and H.C. Thøgersen. 1987. Synthesis and sequence-specific proteolysis of hybrid proteins produced in E. coli. Methods Enzymol. 753:461–481.CrossRefGoogle Scholar
  59. 59.
    Neville, D.M. 1971. Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinous buffer system. J. Biol. Chem. 246:6328–6334.PubMedGoogle Scholar
  60. 60.
    Nishio, N. and H. Satoh. 1997. A water-soluble chlorophyll protein in cauliflower may be identical to Bnd22, a drought-induced, 22-kilodalton protein in rapeseed. Plant. Physiol. 115:841–846.PubMedCrossRefGoogle Scholar
  61. 61.
    Nußberger, S., K. Dorr, D.N. Wang, and W. Kühlbrandt. 1993. Lipid-protein interactions in crystals of plant light-harvesting complex. J. Mol. Biol. 234:347–356.PubMedCrossRefGoogle Scholar
  62. 62.
    Pagano, A., G. Cinque, and R. Bassi. 1998. In vitro reconstitution of the recombinant photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J. Biol. Chem. 273:17154–17165.PubMedCrossRefGoogle Scholar
  63. 63.
    Palsson, L.O., S.E. Tjus, B. Andersson, and T. Gillbro. 1995. Ultrafast energy transfer dynamics resolved in isolated spinach light-harvesting complex I and the LHC I-730 subpopulation. Biochim. Biophys. Acta 1230:1–9.CrossRefGoogle Scholar
  64. 64.
    Parkes-Loach, P.S., J.R. Sprinkle, and P.A. Loach. 1988. Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated alpha and beta-polypeptides and bacteriochlorophyll a. Biochemistry 27:2718–2727.PubMedCrossRefGoogle Scholar
  65. 65.
    Patzlaff, J.S. and B.A. Barry. 1996. Pigment quantitation and analysis by HPLC reverse phase chromatography: a characterization of antenna size in oxygen-evolving photosystem II preparations from cyanobacteria and plants. Biochemistry 35:7802–7811.PubMedCrossRefGoogle Scholar
  66. 66.
    Paulsen, H., B. Finkenzeller, and N. Kühlein. 1993. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur. J. Biochem. 275:809–816.CrossRefGoogle Scholar
  67. 67.
    Paulsen, H. and S. Hobe. 1992. Pigment-binding properties of mutant light-harvesting chlorophyll a/b-binding protein. Eur. J. Biochem. 205:71–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Paulsen, H., U. Rümler, and W. Rüdiger. 1990. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein over-expressed in E. coli. Planta 181:204–211.CrossRefGoogle Scholar
  69. 69.
    Peter, G.F. and J.P. Thornber. 1991. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J. Biol. Chem. 266:16745–16754.PubMedGoogle Scholar
  70. 70.
    Peter, G.F. and J.P. Thornber. 1991. Electrophoretic procedures for fractionation of photosystems I and II pigment proteins of higher plants and for determination of their subunit composition, p. 195–210. In L.G. Rogers (Ed.), Methods in Plant Biochemistry, Vol. 5. Academic Press, New York.Google Scholar
  71. 71.
    Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 53:346–356.CrossRefGoogle Scholar
  72. 72.
    Plumley, F.G. and G.W. Schmidt. 1987. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA 84:146–150.PubMedCrossRefGoogle Scholar
  73. 73.
    Porra, R.J., W.A. Thompson, and P.E. Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 575:384–394.Google Scholar
  74. 74.
    Rhee, K.H., E.P. Morris, J. Barber, and W. Kühlbrandt. 1998. Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution. Nature 396:283–286.PubMedCrossRefGoogle Scholar
  75. 75.
    Rhee, K.H., E.P. Morris, D. Zheleva, B. Hankamer, W. Kühlbrandt (Reprint Author), and J. Barber. 1997. Two dimensional structure of plant photosystem II at 8 A resolution. Nature 389:522–526.CrossRefGoogle Scholar
  76. 76.
    Rhiel, E., W. Lange, and E. Mörschel. 1993. The unusual light-harvesting complex of Mantoniella squamata — supramolecular composition and assembly. Biochim. Biophys. Acta 1143:163–172.PubMedCrossRefGoogle Scholar
  77. 77.
    Ritter, S., J. Komenda, E. Setlikova, I. Setlik, and W. Welte. 1992. Immobilized metal affinity chromatogra-phy for the separation of photosystem I and photosystem II from the thermophilic cyanobacterium Synechococcus elongatus. J. Chromatogr. 625:21–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Robinson, N.C., D. Wiginton, and L. Talbert. 1984. Phenyl sepharose-mediated detergent-exchange chromatography: its application to exchange of detergents bound to membrane proteins. Biochemistry 23:6121–6126.PubMedCrossRefGoogle Scholar
  79. 79.
    Rogl, H., K. Kosemund, W. Kühlbrandt, and I. Collinson. 1998. Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett. 432:21–26.PubMedCrossRefGoogle Scholar
  80. 80.
    Rögner, M., U. Mühlenhoff, E.J. Boekema, and H.T. Witt. 1990. Mono-, di-and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp.* — size, shape and activity. Biochim. Biophys. Acta 1015:415–424.CrossRefGoogle Scholar
  81. 81.
    Roobol-Boza, M. and B. Andersson. 1996. Isolation of hydrophobic membrane proteins by perfusion chromatography — purification of photosystem II reaction centers from spinach chloroplasts. Anal. Biochem. 235:127–133.PubMedCrossRefGoogle Scholar
  82. 82.
    Ros, F., R. Bassi, and H. Paulsen. 1998. Pigment-binding properties of the recombinant photosystem II subunit CP26 reconstituted in vitro. Eur. J. Biochem. 253:653–658.PubMedCrossRefGoogle Scholar
  83. 83.
    Sandoná, D., R. Croce, A. Pagano, M. Crimi, and R. Bassi. 1998. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim. Biophys. Acta 7365:207–214.Google Scholar
  84. 84.
    Sarvari, E. and P. Nyitrai. 1994. Separation of chlorophyll-protein complexes by Deriphat polyacrylamide gradient gel electrophoresis. Electrophoresis 75:1068–1071.CrossRefGoogle Scholar
  85. 85.
    Schmid, V. and C. Schäfer. 1994. Alterations of the chlorophyll-protein pattern in chronically photo-inhibited Chenopodium rubrum cells. Planta 192:473–479.CrossRefGoogle Scholar
  86. 86.
    Schmid, V.H.R., K.V. Cammarata, B.U. Bruns, and G.W. Schmidt. 1997. In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc. Nat. Acad. Sci. USA 94:7667–7672.PubMedCrossRefGoogle Scholar
  87. 87.
    Setlikova, E., S. Ritter, R. Hienerwadel, J. Kopecky, J. Komenda, W. Welte, and I. Setlik. 1995. Purification of a photosystem II reaction center from a thermophilic cyanobacterium using immobilized metal affinity chromatography. Photosynth. Res. 43:201–211.CrossRefGoogle Scholar
  88. 88.
    Smith, P.K., R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fuji-moto, N.M. Goeke, B.J. Olson, and D.C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 79:76–85.CrossRefGoogle Scholar
  89. 89.
    Tan, S., G.R. Wolfe, E.X. Cunningham, and E. Gantt. 1995. Decrease of polypeptides in the PS I antenna complex with increasing growth irradiance in the red alga Porphyridium cruentum. Photosynth. Res. 45:1–10.CrossRefGoogle Scholar
  90. 90.
    Thornber, J.P. 1995. Thirty years of fun with antenna pigment-proteins and photochemical reaction centers: a tribute to the people who have influenced my career. Photosynth. Res. 44:3–22.CrossRefGoogle Scholar
  91. 91.
    Tjus, S.E., M. Roobol-Boza, L.O. Palsson, and B. Andersson. 1995. Rapid isolation of Photosystem I chlorophyll-binding proteins by anion exchange perfusion chromatography. Photosynth. Res. 45:41–49.CrossRefGoogle Scholar
  92. 92.
    Todd, J.B., P.S. Parkes-Loach, J.F. Leykam, and PA. Loach. 1998. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37:17458–17468.PubMedCrossRefGoogle Scholar
  93. 93.
    Val, J., E. Monge, and N.R. Baker. 1994. An improved HPLC method for rapid analysis of the xanthophyll cycle pigments. J. Chromatogr. Sci. 32:286–289.Google Scholar
  94. 94.
    van Amerongen, H. and W.S. Struve. 1995. Polarized optical spectroscopy of chromoproteins. Biochem. Spectroscopy 246:259–283.CrossRefGoogle Scholar
  95. 95.
    van der Staay, G.W.M., A. Brouwer, R.L. Baard, F. Vanmourik, and H.C.P. Matthijs. 1992. Separation of photosystem I and photosystem II from the oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of chlorophyll-b binding antennae with photosystem II. Biochim. Biophys. Acta 1102:220–228.Google Scholar
  96. 96.
    van Holde, K.E., C.E. Johnson, and P.S. Ho. 1998. Physical Biochemistry. Prentice Hall, London.Google Scholar
  97. 97.
    Welte, C., R. Nickel, and A. Wild. 1995. Three-dimensional crystallization of the light-harvesting complex from Mantoniella squamata (Prasinophyceae) requires an adequate purification procedure. Biochim. Biophys. Acta 1231:265–274.CrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Harald Paulsen
    • 1
  • Volkmar H. R. Schmid
    • 1
  1. 1.Institut für Allgemeine Botanik der Johannes-GutenbergUniversität MainzMainzGermany

Personalised recommendations