Advertisement

Analysis of Intermediates and End Products of the Chlorophyll Biosynthetic Pathway

  • Constantin A. Rebeiz
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Since the 1963 seminal review of Smith and French (62), our understanding of the chlorophyll (chl) biosynthetic pathway has changed dramatically. Several factors have contributed to this phenomenon, among which are: (i) development of systems capable of Chl and thylakoid membrane biosynthesis in organello and in vitro (17,28,42,43,46); (ii) development of powerful analytical techniques that allowed the qualitative and quantitative determination of various intermediates of the pathway (this chapter); and (iii) recognition of the probability that the structural and functional complexity of thylakoid includes a multibranched heterogeneous Chl biosynthetic pathway (44).

Keywords

Diethyl Ether Quantitative Determination Excitation Spectrum Emission Maximum Molar Extinction Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adb El Mageed, H.A., K.F. El Sahhar, K.R. Robertson, R. Parham, and C.A. Rebeiz. 1997. Chloroplast biogenesis 77. Two novel monvinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem. Photobiol. 66:89–96.CrossRefGoogle Scholar
  2. 2.
    Adra, A.N. and C.A. Rebeiz. 1998. Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem. Photobiol. 68:852–856.CrossRefGoogle Scholar
  3. 3.
    Amindari, S. 1992. Structure-Function Photodynamic Herbicidal Studies of Phenanthroline, Dipyridyl and Pyridine Analogs, p. 287. NRES, Urbana.Google Scholar
  4. 4.
    Amindari, S.M., W.E. Splittstoesser, and CA Rebeiz. 1995. Photodynamic effects of several metabolic tetrapyrroles on isolated chloroplasts, p. 217–246. In J.R. Heitz and K.R. Downum (Eds.), Light-Activated Pest Control. Am. Chem. Soc. Washington, DC.CrossRefGoogle Scholar
  5. 5.
    Barlow, R.G., D.G. Cummings, and S.W. Gibb. 1997. Improved resolution of mono-and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar. Ecol. Prog. Ser. 161:303–307.CrossRefGoogle Scholar
  6. 6.
    Bazzaz, M.B. 1981. New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem. Photobiophys. 2:199–207.Google Scholar
  7. 7.
    Bazzaz, M.B. and C.A. Rebeiz. 1979. Chloroplast culture V. Spectrofluorometric determination of chlorophyll(ide) a and b and pheophytin (or pheophorbide) a and b in unsegregated pigment mixtures. Photochem. Photobiol. 30:709–721.CrossRefGoogle Scholar
  8. 8.
    Belanger, F.C., J.X. Dugan, and C.A. Rebeiz. 1982. Chloroplast biogenesis: identification of chlorophyllide a (E458F674) as a divinyl chlorophyllide a. J. Biol. Chem. 257:4849–4858.PubMedGoogle Scholar
  9. 9.
    Belanger, F.C. and C.A. Rebeiz. 1980. Chloroplast biogenesis 30. Chlorophyll(ide) (E459F675) and chloro-phyll(ide) (E449F675) the first detectable products of divinyl and monovinyl protochlorophyll photoreduction. Plant Sci. Lett. 18:343–350.CrossRefGoogle Scholar
  10. 10.
    Belanger, F.C. and C.A. Rebeiz. 1980. Chloroplast biogenesis. Detection of divinyl protochlorophyllide ester in higher plants. Biochemistry 19:4875–4883.PubMedCrossRefGoogle Scholar
  11. 11.
    Belanger, F.C. and C.A. Rebeiz. 1980. Chloroplast biogenesis. Detection of divinyl protochlorophyllide in higher plants. J. Biol. Chem. 257:1266–1272.Google Scholar
  12. 12.
    Belanger, F.C. and C.A. Rebeiz. 1982. Chloroplast biogenesis. Detection of monovinyl magnesium protoporphyrin monoester and other monovinyl magnesium porphyrins in higher plants. J. Biol. Chem. 257:1360–1371.PubMedGoogle Scholar
  13. 13.
    Belanger, F.C. and C.A. Rebeiz. 1984. Chloroplast biogenesis 47: spectroscopic study of net spectral shifts induced by ligand coordination in metalated tetrapyrroles. Spectrochim. Acta 40A:807–827.Google Scholar
  14. l4.
    Benz, J., C Wolf, and W. Rudiger. 1980. Chlorophyll biosynthesis: hydrogenation of geranylgeraniol. Plant Sci. Lett. 19:225–230.CrossRefGoogle Scholar
  15. 15.
    Bladon, P. and G. Eglinton. 1964. Ultraviolet, visible and infrared spectroscopy, p. 22–34. In J.C.P. Schwarz (Ed.), Physical Methods in Organic Chemistry. Oliver & Boyd, London.Google Scholar
  16. 16.
    Carey, E.E. and C.A. Rebeiz. 1985. Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol. 79:1–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Daniell, H. and C.A. Rebeiz. 1982. Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem. Biophys. Res. Commun. 106:466–470.PubMedCrossRefGoogle Scholar
  18. 18.
    Duggan, J.X. and C.A. Rebeiz. 1982. Chloroplast biogenesis 37: induction of chlorophyllide a (E459F675) accumulation in higher plants. Plant Sci. Lett. 24: 27–37.CrossRefGoogle Scholar
  19. 19.
    Falk, J.E. 1964. Porphyrins and Metalloporphyrins, p. 250–253. Elsevier, Amsterdam.Google Scholar
  20. 20.
    Fischer, H. and A. Stern. 1940. Die Chimie des Pyrroles, p. 321–324. Kademische, Verlagsgesellschaft.Google Scholar
  21. 21.
    Garrido, J.L. and M. Zapata. 1997. Reversed-phase high performance liquid chromatographic separation of mono-and divinyl chlorophyll forms using pyridinecontaining mobile phases and a polymeric octadecylsilica column. Chromatographia 44:43–49.CrossRefGoogle Scholar
  22. 22.
    Granick, S. 1948. Protoporphyrin 9 as a precursor of chlorophyll. J. Biol. Chem. 172:717–727.PubMedGoogle Scholar
  23. 23.
    Houssier, C. and K. Sauer 1969. Optical properties of the protochlorophyll pigments II. Electronic absorption, fluorescence and circular dichroism spectra. Biochim. Biophys. Acta 172:261–266.Google Scholar
  24. 24.
    Ioannides, I.M., D.M. Fasoula, R.K. Robertson, and C. A. Rebeiz. 1994. An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem. Sys. Ecol. 22:211–220.CrossRefGoogle Scholar
  25. 25.
    Ioannides, I.M., V.P. Shedbalkar, and C.A. Rebeiz. 1997. Quantitative determination of 2-monovinyl pro-tochlorophyll(ide) b by spectrofluorometry. Anal. Biochem. 249:241–244.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, J.S. and C.A. Rebeiz. 1996. Origin of the chlorophyll a biosynthetic heterogeneity in higher plants. J. Biochem. Mol. Biol.29:327–334.Google Scholar
  27. 27.
    Knaust, R. and H. Senger. 1994. Monovinyl and divinyl protochlorophyll in different stages of esterification isolated from mutant C-2A′ of the unicellular green alga Scenedesmu obliquus. Physiol. Plant. 90:490–496.CrossRefGoogle Scholar
  28. 28.
    Kolossov, V., I.M. Ioannides, S. Kulur, and C.A. Rebeiz. 1999. Chloroplast biogenesis 82: development of a cell-free system capable of the net synthesis of chlorophyll(ide) b. Photosynthetica 36:253–258.CrossRefGoogle Scholar
  29. 29.
    Koski, V.M. 1950. Chlorophyll formation in seedlings of Zea mays L. Arch. Biochem. 29:339–343.Google Scholar
  30. 30.
    Koski, V.M. and J.H.C. Smith. 1948. The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J. Am. Chem. Soc. 70:3558–3562.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, H.J., M. Ball, and C.A. Rebeiz. 1991. Intraplastidic localization of the enzymes that convert δ-aminolevulinic acid to protoporphyrin IX in etiolated cucumber cotyledons. Plant Physiol. 96:910–915.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, H.J., M.D. Ball, R. Parham, and C.A. Rebeiz. 1992. Chloroplast biogenesis 65: enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol. 99.1134–1140.PubMedCrossRefGoogle Scholar
  33. 33.
    Lenning, K.V., J.L. Garrido, J. Aristegui, and M. Zapata. 1995. Temperature-programmed high performance liquid chromatography of mono-and divinyl chlorophyll forms from marine phytoplankton. Chromatographia 41:539–543.Google Scholar
  34. 34.
    Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315–322.Google Scholar
  35. 35.
    McCarthy, S.A., F.C. Belanger, and C.A. Rebeiz. 1981. Chloroplast biogenesis: detection of a magnesium protoporphyrin diester pool in plants. Biochemistry 20:5080–5087.PubMedCrossRefGoogle Scholar
  36. 36.
    McCarthy, SA., J.R. Mattheis, and C.A. Rebeiz. 1982. Chloroplast biogenesis: biosynthesis of protochlorophyll(ide) via the acidic and fully esterified biosynthetic branches in higher plants. Biochemistry 21:242–247.PubMedCrossRefGoogle Scholar
  37. 37.
    Nicolas, R.E.H. and C. Rimington. 1949. Qualitative analysis of the porphyrins by partition chromatography. Scand. J. Cli. Lab. Invest. 1:12–18.CrossRefGoogle Scholar
  38. 38.
    Parham, R. and C.A. Rebeiz. 1995. Chloroplast biogenesis 72: a (4-vinyl) chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal. Biochem. 231:164–169.PubMedCrossRefGoogle Scholar
  39. 39.
    Rebeiz, C.A., 1978. The separation of chlorophyll and pheophytins by reversed phase HPLC. Chromatography Rev. 4:8–9.Google Scholar
  40. 40.
    Rebeiz, C.A., and M.B. Bazzaz. 1979. Cell-free agriculture: the concept and its initial implementation, p. 453–471. In CD. Scott (Ed.), Biotechnology in Energy Production and Conservation. John Wiley & Sons, New York.Google Scholar
  41. 41.
    Rebeiz, C.A., F.C. Belanger, S.A. McCarty, G. Freyssinet, J.X. Duggan, S.M. Wu, and J.R. Mattheis. 1981. Biosynthesis and accumulation of novel chlorophyll a. and b chromophoric species in green plants, p. 197–212. In G. Akoyunoglou (Ed.), Photosynthesis V. Chloroplast Development. Balaban International Services, Philadelphia.Google Scholar
  42. 42.
    Rebeiz, C.A., and P. Castelfranco. 1971. Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 47:33–37.PubMedCrossRefGoogle Scholar
  43. 43.
    Rebeiz, C.A., and P. Castelfranco. 1971. Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 47:24–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Rebeiz, C.A., I.M. Ioannides, V. Kolossov, and K.J. Kopetz. 1999. Chloroplast biogenesis 80. Proposal of a unified multibranched chlorophyll a/b biosynthetic pathway. Photosynthetica 36:117–128.CrossRefGoogle Scholar
  45. 45.
    Rebeiz, C. A., J.R. Mattheis, B.B. Smith, C.C. Rebeiz, and D.F. Dayton. 1975. Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch. Biochem. Biophys. 171:549–567.PubMedCrossRefGoogle Scholar
  46. 46.
    Rebeiz, C. A., A. Montazer-Zouhoor, and H. Daniell. 1984. Chloroplast culture X: thylakoid assembly in vitro. Isr. J. Bot. 33:225–235.Google Scholar
  47. 47.
    Rebeiz, C.A., R. Parham, D.A. Fasoula, and I.M. Ioannides. 1994. Chlorophyll biosynthetic heterogeneity, p. 177–193. In D.J. Chadwick and K. Ackrill (Eds.), The Biosynthesis of the Tetrapyrrole Pigments. John Wiley & Sons, New York.Google Scholar
  48. 48.
    Rebeiz, C.A. and D.G. Saab. 1995. Porphyrin Analytical Tools. Software protected by copyright.Google Scholar
  49. 49.
    Rebeiz, C.A., S.M. Wu, M. Kuhadje, H. Daniell, and E.J. Perkins. 1983. Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58:97–125.CrossRefGoogle Scholar
  50. 50.
    Rebeiz, N., S. Arkins, K.W. Kelley, and C.A. Rebeiz. 1996. Enhancement of coproporphyrinogen III transport into isolated leucocyte mitochondria by ATP. Arch. Biochem. Biophys. 333:475–481.PubMedCrossRefGoogle Scholar
  51. 51.
    Reinbothe, C., N. Lebedev, and S. Reinbothe. 1999. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397:80–84.CrossRefGoogle Scholar
  52. 52.
    Rudiger, W. 1993. Esterification of chlorophyllide and its implication for thylakoids development, p. 219–240. In C. Sundqvist and M. Ryberg (Eds.), Pigment-Protein Complexes in Plastids: Synthesis and Assembly. Academic Press, New York.Google Scholar
  53. 53.
    Rudiger, W. and S. Schoch. 1991. The last steps of chlorophyll biosynthesis, p. 451–464. In H. Scheer (Ed.), Chlorophylls. Academic Press, New York.Google Scholar
  54. 54.
    Scheumann, V., H. Klement, M. Helfrish, U. Oster, S. Schoch, and W. Rudiger. 1999. Protochlorophyl-lide b does not occur in barley etioplasts. FEBS Lett. 445:445–448.PubMedCrossRefGoogle Scholar
  55. 55.
    Schoch, S. 1978. The esterification of chlorophyllide a in greening bean leaves. Z. Naturforsch 33c:712–714.Google Scholar
  56. 56.
    Shedbalkar, V.P., I.M. Ioannides, and C.A. Rebeiz. 1991. Chloroplast biogenesis. Detection of monovinyl protochlorophyll(ide) b in plants. J. Biol. Chem. 266:117151–117157.Google Scholar
  57. 57.
    Shedbalkar, V.P. and C.A. Rebeiz. 1992. Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal. Biochem. 207:261–266.PubMedCrossRefGoogle Scholar
  58. 58.
    Shioi, Y. andT. Sasa. 1883. Formation and degradation of protochlorophylls in etiolated and greening cotyledons of cucumber. Plant Cell Physiol. 24:835–840.Google Scholar
  59. 59.
    Shioi, Y. and T. Sasa. 1983. Compositional heterogeneity of protochlorophyllide ester in etiolated leaves of higher plants. Arch. Biochem. Biophys. 220:286–292.PubMedCrossRefGoogle Scholar
  60. 60.
    Shioi, Y. andT. Sasa. 1982. Separation of protochlorophylls esterified with different alcohols from inner seed coat of three cucurbitaceae. Plant Cell Physiol. 23:1315–1321.Google Scholar
  61. 61.
    Shioi, Y., K. Watanabe, K.-i. Takmiya, J.L. Garrido, and M. Zapata. 1995. Separation of mono-and divinyl chlorophyll species by high-performance liquid chromatography using an octadecyl polyvinyl alcohol polymer column. Anal. Biochem. 231:225–229.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith, J.H.C. and C.S. French. 1963. The major accessory pigment in photosynthesis. Ann. Rev. Plant Physiol. 14:181–224.CrossRefGoogle Scholar
  63. 63.
    Tripathy, B.C. and C.A. Rebeiz. 1985. Chloroplast biogenesis. Quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal. Biochem. 149:43–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Tripathy, B.C. and C.A. Rebeiz. 1986. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosyn-thesis in higher plants. J. Biol. Chem. 261:13556–13564.PubMedGoogle Scholar
  65. 65.
    Tripathy, B.C. and C.A. Rebeiz. 1988. Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol. 87:89–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Vernon, L.P. 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Biochem. 32:1144–1150.Google Scholar
  67. 67.
    Withrow, R.B. and L. Price. 1957. A darkroom safelight for research in plant physiology. Plant Physiol. 32:244–248.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu, S.M., J.M. Mayasich, and C.A. Rebeiz. 1989. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry. Anal. Biochem. 178:294–300.PubMedCrossRefGoogle Scholar
  69. 69.
    Wu, S.M. and C.A. Rebeiz 1985. Chloroplast biogenesis. Molecular structure of chlorophyll b (E489 F666). J. Biol. Chem. 260:3632–3634.PubMedGoogle Scholar
  70. 70.
    Zscheile, F.P. and C.P. Cotnar. 1941. Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gazette 102:463–481.CrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Constantin A. Rebeiz
    • 1
  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations