Advertisement

Laboratory Methods for the Study of Tetrapyrroles

  • Alison G. Smith
  • Michael Witty
Protocol
  • 4.8k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Tetrapyrroles are a group of organic molecules that includes chlorophyll (Figure 1), hemes (Figure 2), bilins (Figure 3), and corrins, such as vitamin B12 (37). These molecules are also often referred to as porphyrins, although strictly, these are only those compounds with the same oxidation state as heme. Chlorophyll, for example, has one more saturated bond and is therefore a chlorin (30).
Figure 1.

The structure of chlorophyll a. Chlorophylls are present in protein complexes in the membrane of photosynthetic bacteria and the thylakoid membrane of chloroplasts, where they harvest and trap light energy during photosynthesis ( Chapters 10 and  11)

Figure 2.

The structure of protoheme IX. Hemes are found in a wide range of different proteins, including photosynthetic and respiratory cytochromes involved in electron transfer, the oxidative enzymes catalase and peroxidase, cytochrome P450s, which catalyze mono-oxygenase reactions, and oxygen-carrying proteins such as hemoglobin and myoglobin ( Chapters 7,  8, and  9).

Figure 3.

The structure of phytochromobilin. This is the chromophore of phytochromobilin, which is the red-light receptor of higher plants ( Chapter 13). Linear tetrapyrroles are also found as accessory light-harvesting pigments in cyanobacteria and many algae ( Chapter 14).

Keywords

Coniferyl Alcohol Tetrapyrrole Macrocycle Reduce Nicotinamide Adenine Dinucleotide Phosphate Commit Precursor Linear Tetrapyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alvarez, M.E., R.I. Pennell, P.J. Meijer, A. Ishikawa, R.A. Dixon, and C. Lamb. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 98:773–784.CrossRefGoogle Scholar
  2. 2.
    Appleby, C.A. 1984. Leghemoglobin and rhizobium respiration. Annu. Rev. Plant Physiol. 35:443–478.CrossRefGoogle Scholar
  3. 3.
    Bolognesi, M., C. Rosano, R. Losso, A. Borassi, M. Rizzi, J.B. Wittenberg, A. Boffi, and P. Ascenzi. 1999. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an X-ray crystallographic study. Biophys.J. 77:1093–1099.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonarlaw, R.P., L.G. Mackay, C.J. Walter, V. Mar-vaud, and J.K.M. Sanders. 1994. Towards synthetic enzymes based on porphyrins and steroids. Pure Appl. Chem. 66:803–810.CrossRefGoogle Scholar
  5. 5.
    Bonnett, R. 1999. Photodynamic therapy in historical perspective. Rev. Contemp. Pharmacother. 10:1–17.Google Scholar
  6. 6.
    Buchler, J.W. 1975. Static coordination chemistry of metalloporphyrins, p. 157–231. In K.M. Smith (Ed.), Porphyrins and Metalloporphyrins. Elsevier, Amsterdam.Google Scholar
  7. 7.
    Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58:79–100.PubMedCrossRefGoogle Scholar
  8. 8.
    Callot, H.J. 1991. Geochemistry of chlorophylls, p. 339–364. In H. Scheer (Ed.) Chlorophylls. CRC Press, Boca Raton.Google Scholar
  9. 9.
    Czernuszewicz, R.S., J.G. Rankin, and T.D. Lash. 1996. Fingerprinting petroporphyrin structures with vibrational spectroscopy. 4. Resonance raman spectra of nickel(II) cycloalkanoporphyrins: structural effects due to exocyclic ring size. Inorg. Chem. 35:199–209.PubMedCrossRefGoogle Scholar
  10. 10.
    Dailey, K.K. and T.B. Rauchfuss. 1997. π-Complex-es of metalloporphyrins as model intermediates in hydrodemetallation (HDM) catalysis. Polyhedron 16:3129–3136.CrossRefGoogle Scholar
  11. 11.
    Granick, S. 1966. The induction in vitro of the synthesis of δ-aminolevulinic acid synthase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J. Biol. Chem. 241:1359–1375.PubMedGoogle Scholar
  12. 12.
    Hardison, R. 1998. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J.Exp. Biol. 201:1099–1117.PubMedGoogle Scholar
  13. 13.
    Hartley, B.S., P.M.A. Broda, and P.J. Senior. 1987. Technology in the 1990s: Utilization of Lignocellulosic Wastes. The Royal Society, London.Google Scholar
  14. 14.
    Hodgson, G.W. and B.L. Baker. 1964. Evidence for porphyrins in the orgueil meteorite. Nature 202:125–131.CrossRefGoogle Scholar
  15. 15.
    Hodgson, G.W. and B.L. Baker. 1967. Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 216:29–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Iwahashi, Y. and S. Akamatsu. 1994. Porphyrin pigment in black-lip pearls and its application to pearl identification. Fisheries Sci. 60:69–71.Google Scholar
  17. 17.
    Kennedy, G.Y. 1975. Porphyrins in invertebrates. Ann. NY Acad. Sci. 244:662–673.PubMedCrossRefGoogle Scholar
  18. 18.
    Kennedy, G.Y. and H.G. Vevers. 1976. A survey of avian eggshell pigments. Comp. Biochem. Physiol. B 55:117–123.PubMedCrossRefGoogle Scholar
  19. 19.
    Lathrop, J.T. and M.P. Timko. 1993. Regulation by heme of mitochondrial protein-transport through a conserved amino-acid motif. Science 259:522–525.PubMedCrossRefGoogle Scholar
  20. 20.
    Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtas-Wasilewska, N.S. Cho, M. Hofrichte, and J. Rogalski. 1999. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27:175–185.PubMedCrossRefGoogle Scholar
  21. 21.
    McDonagh, A.F. 1979. Bile pigments: bilatrienes and 5,15-biladienes, p. 293–491. In D. Dolphin (Ed.), The Porphyrins, Vol. 1. Academic Press, London.Google Scholar
  22. 22.
    Nicholas, R.E.H. and C. Rimington. 1952. Isolation of unequivocal uroporphyrin III, a further study of turacin. Biochem. J. 50:194–201.Google Scholar
  23. 23.
    Nose K. 2000. Role of reactive oxygen species in the regulation of physiological functions. Biol. Pharmacol. Bull. 23:897–903.Google Scholar
  24. 24.
    Oster, U., H. Brunner, and W. Rudiger. 1996. The greening process in cress seedlings. 5. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light-regulated expression of Lhc genes. J. Photochem. Photobiol. B 36:255–261.CrossRefGoogle Scholar
  25. 25.
    Sagan, C, W.R. Thompson, R. Carlson, D. Gurnett, and C. Hord. 1993. A search for life on earth from the Galileo spacecraft. Nature 365:715–721.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanders, J.K.M. 1998. Supramolecular catalysis in transition. Chem. Eur. J. 4:1378–1383.CrossRefGoogle Scholar
  27. 27.
    Sanders, J.K.M., N. Bampos, Z. Clyde-Watson, S.L. Darling, J.C. Hawley, H.J. Kim, C.C. Mak, and S.J. Webb. 2000. Axial coordination chemistry of metalloporphyrins, p. 349–390. In K.M. Kadish, K.M. Smith, and R. Guilard (Eds.), The Porphyrin Handbook. Academic Press, London.Google Scholar
  28. 28.
    Sassa, S. and T. Nagai. 1996. The role of heme in gene expression. Int. J. Hematol. 63:167–178.PubMedCrossRefGoogle Scholar
  29. 29.
    Schaeffer, P., R. Ocampo, H.J. Callot, and P. Albrecht. 1993. Extraction of bound porphyrins from suphur-rich sediments and their use for reconstruction of palaeoenvironments. Nature 364:133–136.CrossRefGoogle Scholar
  30. 30.
    Smith, K.M. 1975. Porphyrins and Metalloporphyrins, p. 829–836. Elsevier, Amsterdam.Google Scholar
  31. 31.
    Smith, M.O., S. Jacquemond, M. Verstraete, and Y. Govaerts. 1999. Geobotany: vegetation mapping for earth sciences, p. 189–248. In Remote Sensing for the Earth Sciences, Manual of Remote Sensing, Vol. 3. John Wiley & Sons, New York.Google Scholar
  32. 32.
    Suzuki, T. and K. Imai. 1998. Evolution of myoglobin. Cell. Mol. Life Sci. 54:979–1004.PubMedCrossRefGoogle Scholar
  33. 33.
    Szutka, A. 1966. Formation of pyrrolic compounds by ultra-violet irradiation of δ-aminolevulinic acid. Nature 212:401–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Tamagnone, L., A. Merida, A. Parr, S. Mackay, F.A. Culianez-Macia, K. Roberts, and C. Martin. 1998. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154.PubMedCrossRefGoogle Scholar
  35. 35.
    Terwilliger, N.B. 1998. Functional adaptations of oxygen-transport proteins. J. Exp. Biol. 201:1085–1098.PubMedGoogle Scholar
  36. 36.
    Vothknecht, U.C., C.G. Kannangara, and D. Wettstein. 1998. Barley glutamyl tRNA(Glu) reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47:513–519.PubMedCrossRefGoogle Scholar
  37. 37.
    Warren, M.J. and A.I. Scott. 1990. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem. Sci. 15:486–491.PubMedCrossRefGoogle Scholar
  38. 38.
    Whetten, R.W., J.J. MacKay, and R.R. Sedoroff. 1998. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:585–609.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang, L. and L. Guarente. 1995. Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBOJ. 14:313–320.Google Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Alison G. Smith
    • 1
  • Michael Witty
    • 1
  1. 1.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations