Assay for Neuronal Cell Migration

  • Toby N. Behar
Part of the Springer Protocols Handbooks book series (SPH)


Chemoattractant-induced neuronal migration can be directly and quantitatively evaluated in vitro, using a microchemotaxis assay. This assay has been used to quantitate the chemotropic responses of several migratory cell types, including neutrophils (Harvath et al., 1980; Geiser et al., 1993), monocytes (Reinisch et al., 1993), melanoma cells (Stracke et al., 1989), and smooth muscle cells (Higashiyama et al., 1993). In general, relatively low concentrations of attractants (nM-fM) typically stimulate migratory responses in the greatest number of cells (Stracke et al., 1989; Yao et al., 1990; Grant et al., 1992; Hendey et al., 1992; Rot et al., 1992; Shure et al., 1992; Geiser et al., 1993; Higashiyama et al., 1993; Reinisch et al., 1993). In this assay, cells are acutely dissociated from the developing nervous system, and resuspended in buffer. The suspension of dissociated cells is placed in the upper half of a microchemotaxis chamber, soluble chemoattractants are placed in the bottom half of the chamber, and the cells are separated from the chemoattractants by a membrane containing 8-µm pores. Cells induced to migrate squeeze through the pores, then adhere to the underside of the membrane, which is precoated with substrates to promote cell adhesion.


Migratory Response Sterile Gauze Promote Cell Adhesion Intracellular Signaling Mechanism Spinal Cord Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Behar, T. N., Schaffner A. E., Colton, C. A., Somogyi, R., Olah Z., Lehel, C., and Barker, J. L. (1994), GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J. Neurosci. 14, 29–38.PubMedGoogle Scholar
  2. Behar, T. N., Li Y. X., Tran, H. T., Ma, W., Dunlap, V., Scott, C., and Barker J. L. (1996), GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci. 16, 1808–1818.PubMedGoogle Scholar
  3. Behar, T. N., Scott, C. A., Greene, C. L., Wen, X., Smith, S. V., Marie, D., Liu, Q-Y., Colton, C. A., and Barker, J. L. (1999), Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J. Neurosci. 19, 4449–4461.PubMedGoogle Scholar
  4. Bolin, L. M., Murray, R., Lukacs, N. W., Strieter, R. M., Kunkel, S. L., and Bacon, L. B. (1998), Primary sensory neurons migrate in response to the chemokine RANTES. J. Neuroimmunol. 81, 49–57.PubMedCrossRefGoogle Scholar
  5. Geiser, T., Dewald, B., Ehrengruber, M. U., Clark, L. I., and Baggiolini, M. (1993), The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J. Biol Chem. 268, 15,419–15,424.PubMedGoogle Scholar
  6. Grant, M. B., Khaw, R T., Schultz, G. S., Adams, J. L., and Shimizu, R. W. (1992), Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-β on corneal cell chemotaxis. Invest. Ophthal Vis. Sci. 33, 3292–3301.PubMedGoogle Scholar
  7. Harvath, L., Falk, W. and Leornard, E. J. (1980), Rapid quantitation of neutrophil chemotaxis: Use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J. Immunol Methods 37, 39–45.PubMedCrossRefGoogle Scholar
  8. Hendey, B., Klee, C. B., and Maxfield, F. R. (1992), Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258, 296–298.PubMedCrossRefGoogle Scholar
  9. Higashiyama, S., Abraham, J. A., and Klagsbrun, M. (1993), Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J. Cell. Biol. 122, 933–940.PubMedCrossRefGoogle Scholar
  10. Reinisch, N., Kirchmair, R., Kahler, C. M., Hogue-Angeletti, R., Fischer-Colbrie, R., Winkler, H., and Wiedermann, C. J. (1993), Attraction of human monocytes by the neuropeptide secretoneurin. FEBS Lett. 334, 41–44.PubMedCrossRefGoogle Scholar
  11. Rot, A., Krieger, M., Brunner, T., Bischoff, S. C., Schall, T. J., and Dahinden, C. A. (1992), RANTES and macrophage inflammatory protein la induce the migration and activation of normal human eosinophil granulocytes. J. Exp. Med. 176, 1489–1495.PubMedCrossRefGoogle Scholar
  12. Shure, D., Senior, R. M., Griffin, G. L., and Deuel, T. F. (1992), PDGF AA Homodimers are potent chemoattractants for fibroblasts and neutrophils, and for monocytes activated by lymphocytes or cytokines. Biochem. Biophys. Res. Commu. 186, 1510–1514.CrossRefGoogle Scholar
  13. Stracke, M. L., Engel, J. D., Wilson, L. W., Rechler, M. M., Liotta, L. A., and Schiffmann, E. (1989), The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 264, 21,544–21,549.PubMedGoogle Scholar
  14. Yao, J., Gilbert, D., and Colton, C. (1990), Chemotaxis of cultured CNS microglia. J. Neurosci. Res. 27, 36–42.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Toby N. Behar
    • 1
  1. 1.Laboratory of Neurophysiology, National Institute for Neurological Disorders and StrokeNational Institutes of HealthBethesda

Personalised recommendations