Neural Cell Lines

  • Kaoru Murayama
  • Natalia N. Singh
  • Angela Helmrich
  • David W. Barnes
Part of the Springer Protocols Handbooks book series (SPH)


The availability, in the past three decades, of well-characterized and immortalized neural cell lines has led to a rapid expansion of knowledge in many aspects of neurobiology. The major advantages of cell lines are that they are capable of long-term or indefinite growth, and generally represent a single cell type, providing a degree of reproducibility and simplicity in an otherwise complicated biological field. With these advantages come disadvantages as well, but careful experimental design, and an appreciation of the limits of the approach, allows the investigator using neural cell lines a powerful tool in answering precise questions with a minimum of interpretational complications. Furthermore, the use of cell lines eliminates the considerable cost and other concerns associated with animals as a source of experimental material. This chapter addresses the usefulness, limitations, and availability of neural cell lines. Because methodology of routine cell culture is covered in other chapters of this volume, general technical aspects of laboratory manipulations of the lines are not covered here.


Tyrosine Hydroxylase Neural Stem Cell Increase cAMP Level Neural Cell Type Neural Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Allalunis-Turner, M. J., Barro, G. M., Day, R. S., Dobler, K. D., and Mirzayans, R. (1993), Isolation of two lines from a human malignant glioma specimen differing in sensitivity to radiation and chemotherapeutic drugs. Radiat. Res. 134, 349–354.PubMedCrossRefGoogle Scholar
  2. Amano, T., Richelson, E., and Nirenberg, M. (1972), Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. USA 69, 258–263.PubMedCrossRefGoogle Scholar
  3. Augusti-Tocco, G. and Sato, G. (1969), Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. USA 64, 311–316.PubMedCrossRefGoogle Scholar
  4. Bain, G. and Gottlieb, D. I. (1998), Neural cells derived by in vitro differentiation of PI 9 and embryonic stem cells. Per sped. Dev. Neurobiol. 5, 175–178.Google Scholar
  5. Barth, R. F. (1998), Rat brain tumor models in experimental neuro-oncology. J. Neurooncol. 36, 91–102.PubMedCrossRefGoogle Scholar
  6. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968), Differentiated rat glial cell strain in tissue culture. Science 161, 370,371.PubMedCrossRefGoogle Scholar
  7. Berkemeier, L. R., Winslow, J. W., Kaplan, D. R., Nikolics, K., and Goeddel, D. V. (1991), Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7, 857–866.PubMedCrossRefGoogle Scholar
  8. Biedler, J. L., Roffler-Tarlov, S., Schachner, M., and Freedman, L. S. (1978), Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38, 3751–3757.PubMedGoogle Scholar
  9. Bradford, C. S., Sun, L., and Barnes, D. W. (1994), Basic FGF stimulates proliferation and suppresses melanogenesis in cell cultures derived from early zebrafish embryos. Marine Mol. Biol. Biotech. 3, 78–86.Google Scholar
  10. Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., Duncan, I. D., and McKay, R. D. (1999), Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.PubMedCrossRefGoogle Scholar
  11. Chiappa, S. A., Chi, L. S., Zurwel, R. H., and Raffel, C. (1999), Neurotrophins and Trk receptors in primitive neuroectodermal tumor cell lines. Neurosurgery 45, 1148–1154.PubMedCrossRefGoogle Scholar
  12. Chin, L. S., Yung, W. K., and Raffel, C. (1996), Two primitive neuroectodermal tumor cell lies require an activated insulin-like growth factor I receptor for growth in vitro. Neurosurgery 39, 1183–1190.PubMedCrossRefGoogle Scholar
  13. Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M. (1977), Synapse formation between two clonal cell lines. Science 196, 995–998.PubMedCrossRefGoogle Scholar
  14. Derrington, E. A., Dufay, N., Rudkin, B. B., and Belin, M. F. (1998), Human primitive neuroectodermal tumor cells behave as multipotent neural precursors in response to FGF2. Oncogene 17, 1663–1672.PubMedCrossRefGoogle Scholar
  15. El-Badry, O. M., Romanus, J. A., Helman, L. J., Cooper, M. J., Rechler, M. M., and Israel, M. A. (1989), Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J. Clin. Invest. 84, 829–839.PubMedCrossRefGoogle Scholar
  16. Fabricant, R. N., De Larco, J. E., and Todaro, G. J. (1977), Nerve growth factor receptors on human melanoma cells in cultures. Proc. Natl. Acad. Sci. USA 74, 565–569.PubMedCrossRefGoogle Scholar
  17. Friedman, H. S., Burger, P. C., Bigner, S. H., Trojanowski, J. Q., Wikstrand, C. J., Halperin, E. C., and Bigner, D. D. (1985), Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283. J. Neuropathol Exp. Neurol. 44, 592–605.PubMedCrossRefGoogle Scholar
  18. Fu, W., Begley, J. G., Killen, M. W., and Mattson M. P. (1999), Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274, 7264–7271.PubMedCrossRefGoogle Scholar
  19. Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., and Parks, W. P. (1973), In vitro cultivation of human tumors; establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417–1423.PubMedGoogle Scholar
  20. Greene, L. A. and Tischler, A. S. (1976), Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424–2428.PubMedCrossRefGoogle Scholar
  21. Iavarone, A., Lasorela, A., Servidei, T., Riccardi, R., and Mastrangelo, R. (1993), Uptake and storage of m-iodobenzylguanidine are frequent neuronal functions of human neuroblastoma cell lines. Cancer Res. 53, 304–309.PubMedGoogle Scholar
  22. Javanovic, J. N., Benfenati, F., Siow, Y. L., Sihra, T. S., Sanghera, J. S., Pelech, S. L., Greengard, P., and Czernik, A. J. (1996), Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679–3683.CrossRefGoogle Scholar
  23. Kaneko, K., Aulianello, L., Scott, M., Cooper, C. M., Wallace, A. C., James, T. L., Cohen, F. E., and Prusiner, S. B. (1997), Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 94, 10,069–10,074.PubMedCrossRefGoogle Scholar
  24. Kippenberger, A. G., Palmer, D. J., Comer, A. M., Lipski, J., Burtn, L. D., and Christie, D. L. (1999), Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells. J. Neurochem. 73, 1024–1032.PubMedCrossRefGoogle Scholar
  25. Kobayashi, S. and Millhorn, D. E. (1999), Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. J. Biol. Chem. 274, 20,358–20,365.PubMedCrossRefGoogle Scholar
  26. Kruse, C. A., Mitchell, D. H., Kleinschmidy-DeMasters, B. K., Franklin, W. A., Morse, H. G., Spector, E. B., and Lillehi, K. O. (1992), Characterization of a continuous human glioma cell line DBTRG-05MG; growth kinetics, karyotype, receptor expression, and tumor suppressor gene analyses. In Vitro Cell Dev. Biol. 28, 609–614.CrossRefGoogle Scholar
  27. Kruttgen, A., Moller, J. C., Heymach, J. V., and Shooter, E. M. (1998), Neurotrophins induce release of neurotrophins by the regulated secretory pathway. Proc. Natl Acad. Sci. USA 95, 9614–9619.PubMedCrossRefGoogle Scholar
  28. Lampson, L. A., Lampson, M. A., and Dunne, A. D. (1993), Exploiting the lacL reporter gene for quantitative analysis of disseminated tumor growth within the brain. Cancer Res. 53, 176–182.PubMedGoogle Scholar
  29. Levi, A., Eldreige, J. D., and Peterson, B. M. (1985), Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229, 393–395.PubMedCrossRefGoogle Scholar
  30. Li, R. (1999), Culture methods for selective growth of normal rat and human Schwann cells. Methods Cell Biol. 57, 167–186.CrossRefGoogle Scholar
  31. Li, S. H., Cheng, A. L., Li, H., and Li, X. J. (1999), Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neurosci. 19, 5159–5172.PubMedGoogle Scholar
  32. Loo, D. T., Fuquay, J. I., Rawson, C. L., and Barnes, D. W. (1987), Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236, 200–202.PubMedCrossRefGoogle Scholar
  33. Loo, D., Sakai, Y., Rawson, C., and Barnes, D. (1991), Serial passage of embryonic human astrocytes in serum-free, hormone-supplemented medium. J. Neurosci. Res. 28, 101–109.PubMedCrossRefGoogle Scholar
  34. Loo, D. T., Althoen, M. C., and Cotman, C. W. (1994), Down regulation of nestin by TGF-beta or serum in SFME cells accompanies differentiation into astrocytes. NeuroReport 5, 1585–1588.PubMedCrossRefGoogle Scholar
  35. Loo, D. T., Althoen, M. C., and Cotman, C. W. (1995), Differentiation of SFME cells into astrocytes is accompanied by induction of glutamine synthetase activity. J. Neurosci. Res. 42, 184–191.PubMedCrossRefGoogle Scholar
  36. Loo, D., Bradford, S., Sharps, A., and Barnes, D. (1998), BCL-2 inhibits cell death of serum-free mouse embryo cells caused by EGF deprivation. Cell Biol. Tox. 14, 375–382.CrossRefGoogle Scholar
  37. McBurney, M. W., Jones-Villeneuve, E. M., Edwards, M. K., and Anderson, P. J. (1982), Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299, 165–167.PubMedCrossRefGoogle Scholar
  38. Nie, Z., Mei, Y., Malek, R. L., Marcuzzi, A., Lee, N. H., and Ramkumar, V. (1999), A role of p75 in NGF-mediated dose-regulation of the A(2A) adenosine receptors in PC 12 cells. Mol. Pharmacol. 56, 947–954.PubMedGoogle Scholar
  39. Nishiyama, K., Collodi, P., and Barnes, D. (1993), Regulation of glial fibrillary acidic protein in serum-free mouse embryo (SFME) cells by leukemia inhibitory factor and related peptides. Neurosci. Lett. 163, 114–116.PubMedCrossRefGoogle Scholar
  40. Owens, R. B., Smith, H. S., Nelson-Rees, W. A., and Springer, E. L. (1976), Epithelial cell cultures from normal and cancerous human tissues. J. Natl. Cancer Inst. 56, 843–849.PubMedGoogle Scholar
  41. Pance, A., Morgan, K., Guesst, P. C., Bowers, K., Dean, G. E., Culter, D. F., and Jackson, A. P. (1999), A PC12 variant lacking regulated secretory organelles. J. Neurochem. 73, 21–30.PubMedCrossRefGoogle Scholar
  42. Radany, E. H., Brenner, M., Besnard, F., Bigornia, V., Bishop, J. M., and Deschepper, C. F. (1992), Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc. Natl. Acad. Sci. USA 89, 6467–6471.PubMedCrossRefGoogle Scholar
  43. Rawson, C., Loo, D., Hedstrom, O., Schmidt, E., and Barnes, D. (1991), Death of serum-free mouse embryo (SFME) cells caused by EGF deprivation. J. Cell Biol. 113, 671–680.PubMedCrossRefGoogle Scholar
  44. Raymond, H. K., Thode, S., Zhou, J., Friedman, G. C., Pardinas, J. R., Barrere, C., Johnson, R. M., and Sah, D. W. (1999), Immortalized human dorsal root ganglion cells differentiate into neurons with nociceptive properties. J. Neurosci. 19, 5420–5428.Google Scholar
  45. Richelson, E. (1973), Regulation of tyrosine hydroxylase activity in mouse neuroblastoma clone N1E-115. J. Neurochem. 21, 1139–1145.PubMedCrossRefGoogle Scholar
  46. Rostomily, R. C., Bermingham-McDonogh, O., Berger, M. S., Tapscott, S. J., Reh, T. A., and Olson, J. M. (1997), Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res. 57, 3526–3531.PubMedGoogle Scholar
  47. Sakai, Y., Rawson, C., Lindburg, K., and Barnes, D. (1990), Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum free-derived mouse embryo cells. Proc. Natl. Acad. Sci. USA 87, 8378–8382.PubMedCrossRefGoogle Scholar
  48. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J., Culp, W., and Brandt, B. L. (1974), Clonal cell lines from the rat central nervous system. Nature 249, 224–225.PubMedCrossRefGoogle Scholar
  49. Sherwood, N. T., Lessser, S. S., and Lo, D. C. (1997), Neurotrophin regulation of ionic currents and cell size depends on cell context. Proc. Natl. Acad. Sci. USA 94, 5917–5922.PubMedCrossRefGoogle Scholar
  50. Singh, N. N. and Barnes, D. W. (2000), Fibroblast growth factor regulation of development in primary cultures of early zebrafish embryo cells. Marine Biol., submitted.Google Scholar
  51. Slinskey, A., Helmrich, A., Barnes, D., and Pipas, J. M. (1999), SV40 large T antigen J domain and RB-binding motif are sufficient to block apoptosis induced by growth factor withdrawal in a neuronal stem cell line. J. Virol., in press.Google Scholar
  52. Solem, M., Rawson, C., Lindburg, K.,, and Barnes, D. (1990), Transforming growth factor beta regulates cystatin C in serum-free mouse embryo (SFME) cells. Biochem. Biophy. Res. Commun. 172, 945–951.CrossRefGoogle Scholar
  53. Su, W., Ueno-Yamanouchi, A., Hakayama, H., and Doi, K. (1998), Encephalomyocarditis virus infection in PC 12 and C6 cells. Int. J. Exp. Pathol. 79, 411–416.PubMedCrossRefGoogle Scholar
  54. Sun, L., Bradford, S., Ghosh, C., Collodi, P., and Barnes, D. (1995), ES-like cell cultures derived from early zebrafish embryos. Mole. Marine Biol. Biotech. 4, 193–199.Google Scholar
  55. Syapin, P. J., Salvaterra, P. M., and Engelhardt, J. K. (1982), Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res. 213, 365–377.CrossRefGoogle Scholar
  56. Thomson, J. W., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. I., Marshall, V S., and Jones, J. M. (1998), Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  57. Tumilowicz, J. I., Nichols, W. W., Cholon, J. J., and Greene, A. E. (1970), Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 30, 2110–2118.PubMedGoogle Scholar
  58. Walowitz, J. L. and Roth J. A. (1999), Activation of ERK1 and ERK2 is required for manganese-induced neurite outgrowth in rat pheochromocytoma (PC 12) cells. J. Neurosci. Res. 57, 847–854.PubMedCrossRefGoogle Scholar
  59. Weisz, P. V., Solem, M., and Barnes, D. (1993), Expression of a TGFβ regulated, brain-specific mRNA in serum-free mouse embryo (SFME) cells. Neurosci. Lett. 154, 153–156.PubMedCrossRefGoogle Scholar
  60. Westphal, M. and Meissner, H. (1999), Establishing human glioma-derived cell lines. Methods Cell Biol. 57, 147–165.CrossRefGoogle Scholar
  61. Yoshida, H. Date, I. Shingo, T. Fujiwara, K. Mihoshi, Y. Furuta, T. and Ohmoto, T. (1999), Evaluation of reaction of primate brain to grafted PC12 cells. Cell Transplant. 8, 427–430.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Kaoru Murayama
    • 1
  • Natalia N. Singh
    • 1
  • Angela Helmrich
    • 1
  • David W. Barnes
    • 1
  1. 1.Division of Cell, Developmental, and Molecular BiologyAmerican Type Culture CollectionManassas

Personalised recommendations