Cultures of Oligodendroblasts from Primary Cultures of Rat Neopallium

  • Bernhard H. J. Juurlink
  • Shawn K. Thorburne
  • Richard M. Devon
Part of the Springer Protocols Handbooks book series (SPH)


Several distinct stages of differentiation have been described for the oligodendroglial lineage in vitro (Gard and Pfeiffer, 1990; Gard et al., 1995). These include the actively proliferating bipolar or tripolar oligodendroglial precursor cell, characterized by the presence of GQ1c and GD3 gan-gliosides in the plasmalemma. The oligodendroglial precursor cell differentiates into the multipo-lar oligodendroblast, a proliferative cell that has sulfatide, but no galactocerebroside, in its plasma-lemma. The oligodendroblast differentiates into the mitotically quiescent oligodendrocyte, a cell characterized by the presence of galactocerebroside in its plasmalemma. These oligodendrocytes also express other myelin-associated proteins, such as myelin basic protein. When transplanted into the central nervous system (CNS) of hypomyelinating hosts, oligodendrocyte precursors migrate over considerable distances, and give rise to large numbers of myelinating oligodendrocytes; oligodendroblasts migrate only short distances, and give rise to far fewer myelinating oligodendrocytes (Warrington et al., 1993). When transplanted into the CNS, the mature oligodendrocyte will also myelinate axons (Duncan et al., 1992).


Myelin Basic Protein Oligodendrocyte Precursor Cell Mature Oligodendrocyte Oligodendroglial Cell Oligodendroglial Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Behar, T., McMorris, F. A., Novotny, E. A., Barker, J. L., and Dubois-Dalq, M. (1988), Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J. Neurosci. Res. 21, 168–180.PubMedCrossRefGoogle Scholar
  2. Duncan, I. D., Paino, C, Archer, D. R., and Wood, P. M. (1992), Functional capacities of transplanted cell-sorted adult oligodendrocytes. Dev. Neurosci. 14, 114–122.PubMedCrossRefGoogle Scholar
  3. Gard, A. L. and Pfeiffer, S. E. (1990), Two proliferative stages of oligodendrocyte lineage (A2B5+O4 and O4+GalC) under different mitogenic control. Neuron 5, 615–625.PubMedCrossRefGoogle Scholar
  4. Gard, A. L., Pfeiffer, S. E., and Williams II, W. C. (1993), Immunopanning and developmental stage-specific primary culture of oligodendrocyte precursors (O4+ GalC) directly from postnatal rodent cerebrum. Neuroprotocols 2, 209–218.CrossRefGoogle Scholar
  5. Gard, A. L., Williams, W. C, and Burrell, M. R. (1995), Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype (O4+GalC) and response to cytokines using signal transducer LIFR beta. Dev. Biol. 167, 596–608.PubMedCrossRefGoogle Scholar
  6. Hunter, S. F. and Bottenstein, J. E. (1989), Bipotential glial progenitors are targets of neuronal cell-line derived growth factors. Dev. Brain Res. 49, 33–49.CrossRefGoogle Scholar
  7. Hunter, S. F. and Bottenstein, J. E. (1990), Growth factor responses of enriched bipotential glial progenitors. Dev. Brain Res. 54, 235–248.CrossRefGoogle Scholar
  8. Husain, J. and Juurlink, B. H. J. (1995), Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res. 698, 86–94.PubMedCrossRefGoogle Scholar
  9. Louis, J. C., Magal, E., Muir, D., Manthorpe, M, and Varon, S. (1993), CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J. Neurosci. Res. 31, 193–204.CrossRefGoogle Scholar
  10. McCarthy, K. D. and de Vellis, J. (1980), Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  11. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kines, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L. (1974), Clonal cell lines from the rat central nervous system. Nature (Lond.) 249, 224–227.CrossRefGoogle Scholar
  12. Szuchet, S., Arnason, B. G. W., and Polak, P. E. (1980), Separation of ovine oligodendrocytes in two distinct bands on a linear sucrose gradient. J. Neurosci. Methods 3, 7–19.PubMedCrossRefGoogle Scholar
  13. Warrington, A. E., Barbarese, E., and Pfeiffer, S. E. (1993), Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J. Neurosci. Res. 34, 1–13.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Bernhard H. J. Juurlink
    • 1
  • Shawn K. Thorburne
    • 1
  • Richard M. Devon
    • 2
  1. 1.Department of Anatomy and Cell Biology, College of MedicineUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Oral Biology, College of DentistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations