Advertisement

In Vitro Assays for Axonal Growth and Targeting

  • Valérie Castellani
  • Jürgen Bolz
Protocol
  • 2.9k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

In vitro assays are important tools for investigating how the intricate network of neuronal connections is established during brain development. We have been using different in vitro systems to study the cellular strategies involved in the formation of neuronal projections between the cerebral cortex and subcortical areas, and to examine mechanisms that control the assembly of local cortical circuits (for review, see Bolz et al., 1993; Bolz, 1996; Bolz and Castellani, 1997). Results from these studies indicated that diffusible and membrane-associated molecules provide crucial information for the establishment of layer-specific extrinsic and intrinsic cortical connections.

Keywords

Plasma Clot Laminar Flow Hood Cortical Slice Fiber Outgrowth Membrane Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Annis, C. M., Edmond, J., and Robertson, R. T. (1990), A chemically-defined medium for organotypic slice cultures. J. Neurosci. Methods 32, 63–70.PubMedCrossRefGoogle Scholar
  2. Annis, C. M., Robertson, R. T., and O’Dowd, D.K. (1993), Aspects of early postnatal development of cortical neurons that proceed independently of normally present extrinsic influences. J. Neurobiol 24, 1460–1480.PubMedCrossRefGoogle Scholar
  3. Bagnard, D., Lohrum, M., Uziel, D., Püschel, A. W., and Bolz, J. (1998), Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125, 5043–5053.PubMedGoogle Scholar
  4. Baganard, D., Thomasset, N., Lohrum, M., Püschel, A. W., and Bolz, J. (2000), Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J. Neurosci. 20, 1030–1035.Google Scholar
  5. Bolz, J., Novak, N., Götz, M., and Bonhoeffer, T. (1990), Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346, 359–362.PubMedCrossRefGoogle Scholar
  6. Bolz, J., Novak, N., and Staiger, V. (1992), Formation of specific afferent connections in organotypic slice cultures from rat visual cortex co-cultured with lateral geniculate nucleus. J. Neurosci. 12, 3054–3070.PubMedGoogle Scholar
  7. Bolz, J., Götz, M., Hübener, M., and Novak, N. (1993), Reconstructing cortical connections in a dish. Trends Neurosci. 16, 310–316.PubMedCrossRefGoogle Scholar
  8. Bolz, J., Castellani, V., Mann, F., and Henke-Fahle, S. (1996), Specification of layer-specific connections in the developing cortex. Prog. Brain Res. 108, 41–54.PubMedCrossRefGoogle Scholar
  9. Bolz, J. and Castellani, V. (1997), How do wiring molecules specify cortical connections? Cell Tissue Res. 290, 307–314.PubMedCrossRefGoogle Scholar
  10. Caeser, M., Bonhoeffer, T., and Bolz, J. (1989), Cellular organization and development of slice cultures from rat visual cortex. Exp. Brain. Res. 77, 234–244.PubMedCrossRefGoogle Scholar
  11. Castellani, V., Yue, Y., Gao, P. P., Zhou, R., and Bolz, J. (1998), Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J. Neurosci. 18, 4663–4672.PubMedGoogle Scholar
  12. Castellani, V. and Bolz, J. (1997), Membrane-associated molecules regulate the formation of layer-specific cortical circuits. Proc. Natl. Acad. Sci. USA 94, 7030–7035.PubMedCrossRefGoogle Scholar
  13. Castellani, V. and Bolz, J. (1999), Opposing roles of neurotrophin-3 in targeting and collareral formation of distinct sets of developing cortical neurons. Development 126, 3335–3345.PubMedGoogle Scholar
  14. Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonhoeffer, F. (1995), In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for eph receptor tyrosine kinases. Cell 82, 359–370.PubMedCrossRefGoogle Scholar
  15. Gähwiler, B. H. (1981), Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329–342.PubMedCrossRefGoogle Scholar
  16. Götz, M., Novak, N., Bastmeyer, M., and Bolz, J. (1992), Membrane bound molecules in rat cerebral cortex regulate thalamic innervation. Development 116, 507–519.Google Scholar
  17. Götz, M. and Bolz J. (1992), Preservation and formation of cortical layers in slice cultures. J. Neurobiol. 23, 783–802.PubMedCrossRefGoogle Scholar
  18. Götz, M. and Bolz J. (1994), Differentiation of transmitter phenotypes in rat cerebral cortex. Eur. J. Neurosci. 6, 18–32.PubMedCrossRefGoogle Scholar
  19. Henke-Fahle, S., Mann, F., Götz, M, Wild, K., and Bolz, J. (1996), A dual action of a carbohydrate epitope on afferent and efferent axons in cortical development. J. Neurosci. 16, 4195–4206.PubMedGoogle Scholar
  20. Hübener, M., Götz, M., Klostermann, S., and Bolz J. (1995), Guidance of thalamocortical axons by growth-promoting molecules in developing rat cerebral cortex. Eur. J. Neurosci. 7, 1963–1972.PubMedCrossRefGoogle Scholar
  21. Walter, J., Kern-Veits, B., Huf, J., Stolze, B., and Bonhoeffer, F. (1987), Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696.PubMedGoogle Scholar
  22. Mann, F., Zhukareva, V., Pimenta, A., Levitt, P., and Bolz, J. (1998), Membrane-associated molecules guide limbic and nonlimbic thalamocortical projections. J. Neurosci. 18, 9409–9419.PubMedGoogle Scholar
  23. Roberts, J. S., O’Rourke, N. A., and McConnell, S. K. (1993), Cell migration in cultured cerebral cortical slices. Dev. Biol. 155, 396–408.PubMedCrossRefGoogle Scholar
  24. Stoppini, L., Buchs, P., and Muller D. (1991), A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182.PubMedCrossRefGoogle Scholar
  25. Tessier-Lavigne, M. and Goodman, C. S. (1996), The molecular biology of axon guidance. Science 274, 1123–1133.PubMedCrossRefGoogle Scholar
  26. Yamamoto N., Yamada K., Kurotani T., and Toyama K. (1992), Laminar specificity of extrinsic cortical connections studied in coculture preparations. Neuron 9, 217–228.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Valérie Castellani
    • 1
  • Jürgen Bolz
    • 1
  1. 1.Institut für Allgemeine Zoologie und TierphysiologieUniversität JenaGermany

Personalised recommendations