Affinity Chromatography of Oligosaccharides and Glycopeptides with Immobilized Lectins

  • Kazuo Yamamoto
  • Tsutomu Tsuji
  • Toshiaki Osawa
Part of the Springer Protocols Handbooks book series (SPH)


Sugar moieties on the cell surface play one of the most important roles in cellular recognition. To elucidate the molecular mechanism of these cellular phenomena, assessment of the structure of sugar chains is indispensable. However, it is difficult to elucidate the structures of cell surface oligosaccharides owing to two technical problems. The first is the difficulty in fractionating various oligosaccharides heterogeneous in the number, type, and substitution patterns of outer sugar branches. The second problem is that very limited amounts of material can be available, which makes it difficult to perform detailed structural studies. Lectins are proteins with sugar binding activity. Each lectin binds specifically to a certain sugar sequence in oligosaccharides and glycopeptides. To overcome these problems, lectins can serve as very useful tools. Recently, many attempts have been made to fractionate oligosaccharides and glycopeptides on immobilized lectin columns. The use of a series of immobilized lectin columns, whose sugar binding specificities have been precisely elucidated, enables us to fractionate a very small amount of radioactive oligosaccharides or glycopeptides (∼10 ng depending on the specific activity) into structurally distinct groups. In this chapter, we summarize the serial lectin-Sepharose affinity chromatographic technique for rapid, sensitive, and specific fractionation and analysis of asparagine-linked oligosaccharides of glycoproteins.


Sialic Acid Complex Type Column Volume Sugar Chain High Mannose Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.PubMedCrossRefGoogle Scholar
  2. 2.
    Tsuji, T., Irimura, T., and Osawa, T. (1981) The carbohydrate moiety of Band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 256, 10,497–10,502.PubMedGoogle Scholar
  3. 3.
    Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N. (1984) Structure of branched lactosaminoglycan, the carbohydrate moiety of Band 3 isolated from adult human erythrocytes. J. itBiol. Chem. 259, 8260–8273.Google Scholar
  4. 4.
    Merkle, R. K. and Cummings, R. D. (1987) Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. J. itBiol. Chem. 282, 8179–8189.Google Scholar
  5. 5.
    Fukuda, M. (1985) Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochem. Biophys. Acta. 780, 119–150.PubMedGoogle Scholar
  6. 6.
    Green, E. D. and Baenziger, J. U. (1988) Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J. itBiol. Chem. 263, 25–35.Google Scholar
  7. 7.
    Nakata, N., Furukawa, K., Greenwalt, D. E., Sato, T., and Kobata, A. (1993) Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells: occurrence of novel hybrid type sugar chains containing the Neu5Aca2-6GalNAcβ1-4GlcNAc and the Manα1-2Manα1-3Manα1-6Man groups. Biochemistry 32, 4369–4383.PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda, M., Kondo, T., and Osawa, T. (1976) Studies on the hydrazinolysis of glycoproteins. Core structures of oligosaccharides obtained from porcine thyroglobulin and pineapple stem bromelain. J. itBiochem. 80, 1223–1232.Google Scholar
  9. 9.
    Takasaki, S. and Kobata, A. (1978) Microdetermination of sugar composition by radioisotope labeling. Meth. Enzymol. 50, 50–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Tai, T., Yamashita, K., Ogata, M. A., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., and Kobata, A. (1975) Structural studies of two ovalbumin glycopeptides in relation to the endo-β-N-acetylglucosaminidase specificity. J. itBiol Chem. 250, 8569–8575.Google Scholar
  11. 11.
    Rupley, J. A. (1964) The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrates for lysozyme. Biochem. Biophys. Acta. 83, 245–255.PubMedGoogle Scholar
  12. 12.
    Krusius, T., Finne, J., and Rauvala, H. (1978) The poly(glycosyl) chains of glycoproteins. Characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane. Eur. J. Biochem. 92, 289–300.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto, K., Tsuji, T., Tarutani, O., and Osawa, T. (1984) Structural changes of carbohydrate chains of human thyroglobulin accompanying malignant transformations of thyroid grands. Eur. J. Biochem. 143, 133–144PubMedCrossRefGoogle Scholar
  14. 14.
    Tsuji, T., Irimura, T., and Osawa, T. (1980) The carbohydrate moiety of Band-3 glycoprotein of human erythrocyte membranes. Biochem. J. 187, 677–686.PubMedGoogle Scholar
  15. 15.
    Baenziger, J. U. and Fiete, D. (1979) Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. itBiol. Chem. 254, 9795–9799.Google Scholar
  16. 16.
    Irimura, T., Tsuji, T., Yamamoto, K., Tagami, S., and Osawa, T. (1981) Structure of a complex type sugar chain of human glycophorin A. Biochemistry 20, 560–566.PubMedCrossRefGoogle Scholar
  17. 17.
    Shibuya, N., Goldstein, I. J., Van Damme, E. J. M., and Peumans, W. J. (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. Biol. Chem. 263, 728–734.PubMedGoogle Scholar
  18. 18.
    Yamamoto, K., Tsuji, T., Matsumoto, I., and Osawa, T. (1981) Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry 20, 5894–5899.PubMedCrossRefGoogle Scholar
  19. 19.
    Ogata, S., Muramatsu, T., and Kobata, A. (1975) Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J. Biochem. 78, 687–696.PubMedGoogle Scholar
  20. 20.
    Krusius, T., Finne, J., and Rauvala, H. (1976) The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides from concanavalin A-Sepharose. FEBS Lett. 71, 117–120.CrossRefGoogle Scholar
  21. 21.
    Kornfeld, K., Reitman, M. L., and Kornfeld, R. (1981) The carbohydrate-binding specificity of pea and lentil lectins. J. Biol. Chem. 256, 6633–6640PubMedGoogle Scholar
  22. 22.
    Katagiri, Y., Yamamoto, K., Tsuji, T., and Osawa, T. (1984) Structural requirements for the binding of glycopeptides to immobilized vicia faba (fava) lectin. Carbohydr. Res. 129, 257–265.CrossRefGoogle Scholar
  23. 23.
    Yamamoto, K., Tsuji, T., and Osawa, T. (1982) Requirement of the core structure of a complex type glycopeptide for the binding to immobilized lentil-and pea-lectins. Carbohydr. Res. 110, 283–289.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamashita, K., Hitoi, A., and Kobata, A. (1983) Structural determinants of Phaseolus vulgaris erythroagglutinating lectin for oligosaccharides. J. Biol. Chem. 258, 14,753–14,755.PubMedGoogle Scholar
  25. 25.
    Cummings, R. D. and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11,230–11,234.PubMedGoogle Scholar
  26. 26.
    Cummings, R. D. and Kornfeld, S. (1984) The distribution of repeating [Galβ1,4GlcNAcβ1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell line BW5147 and PHAR2.1. J. Biol. Chem. 259, 6253–6260.PubMedGoogle Scholar
  27. 27.
    Yamashita, K., Totani, K. T., Ohkura, Takasaki, S., Goldstein, I. J., and Kobata, A. (1987) Carbohydrate binding properties of complex type oligosaccharides on immobilized Datura stramonium lectin. J. Biol. Chem. 262, 1602–1607.PubMedGoogle Scholar
  28. 28.
    Irimura, T. and Nicolson, G. L. (1983) Interaction of pokeweed mitogen with poly (N-acetyllactosamine) type carbohydrate chains. Carbohydr. Res. 120, 187–195.PubMedCrossRefGoogle Scholar
  29. 29.
    Kawashima, H., Sueyoshi, S., Li, H., Yamamoto, K., and Osawa, T. (1990) Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconjugate J. 7, 323–334.CrossRefGoogle Scholar
  30. 30.
    Wang, W.-C. and Cummings, R. D. (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex type Asn-linked oligosaccharides containing terminal sialic acid-linked a-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–4585.PubMedGoogle Scholar
  31. 31.
    Kawaguchi, T., Matsumoto, I., and Osawa, T. (1974) Studies on hemagglutinins from Maackia amurensis seeds. J. Biol. Chem. 249, 2786–2792.PubMedGoogle Scholar
  32. 32.
    Sueyoshi, S., Yamamoto, K., and Osawa, T. (1988) Carbohydrate binding specificity of a beetle (Allomyrina dichotoma) lectin. J. Biochem. 103, 894–899.PubMedGoogle Scholar
  33. 33.
    Yamashita, K., Umetsu, K., Suzuki, T., Iwaki, Y., Endo, T., and Kobata, A. (1988) Carbohydrate binding specificity of immobilized Allomyrina dichotoma lectin II. J. Biol. Chem. 263, 17,482–17,489.PubMedGoogle Scholar
  34. 34.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Lubaki, M. N., Peeters, B., and Peumans. W. J. (1987) Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch. Biochem. Biophys. 254, 1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Lubaki, M. N., Peeters, B., and Peumans, W. J. (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2-6)Gal/ GalNAc sequence. J. Biol. Chem. 262, 1596–1601.PubMedGoogle Scholar
  36. 36.
    Konami, Y., Yamamoto, K., Osawa, T., and Irimura, T. (1994) Strong affinity of Maackia amurensis hemagglutinin (MAH) for sialic acid-containing Ser/Thr-linked carbohydrate chains of N-terminal octapeptides from human glycophorin A. FEBS Lett. 342, 334–338.PubMedCrossRefGoogle Scholar
  37. 37.
    Osawa, T. and Tsuji, T. (1987) Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Ann. Rev. Biochem. 56, 21–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Osawa, T. (1989) Recent progress in the application of plant lectins to glycoprotein chemistry. Pure & Appl. Chem. 61, 1283–1292.CrossRefGoogle Scholar
  39. 39.
    Tsuji, T., Yamamoto, K., and Osawa, T. (1993) Affinity chromatography oligosaccharides and glycopeptides with immobilized lectins, in Molecular Interaction in Bioseparations, (Ngo, T.T., ed.), Plenum Press, New York, pp. 113–126.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Kazuo Yamamoto
    • 1
  • Tsutomu Tsuji
    • 2
  • Toshiaki Osawa
    • 3
  1. 1.Department of Integrated Biosciences, Graduate School of Frontier SciencesUniversity of TokyoJapan
  2. 2.Hoshi Pharmaceutical CollegeTokyoJapan
  3. 3.Yakult Central Institute for Microbiology ResearchTokyoJapan

Personalised recommendations