Advertisement

Identification of Glycoproteins on Nitrocellulose Membranes Using Lectin Blotting

  • Patricia Gravel
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Glycoproteins result from the covalent association of carbohydrate moieties (gly-cans) with proteins. The enzymatic glycosylation of proteins is a common and complex form of posttranslational modification. The precise roles played by the carbohydrate moieties of glycoproteins are beginning to be understood (1-3). It has been established that glycans perform important biological roles including: stabilization of the protein structure; protection from degradation; and control of protein solubility, protein transport in cells, and protein half-life in blood. They also mediate the interactions with other macromolecules and the recognition and association with viruses, enzymes, and lectins (4-6).

Keywords

Carbohydrate Moiety Colorimetric Reaction Neuraminic Acid Carbohydrate Binding Protein Important Biological Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.PubMedCrossRefGoogle Scholar
  2. 2.
    Turner, G. A. (1992) N-Glycosylation of serum proteins in disease and its investigation using lectins. Clin. Chim. Acta 208, 149–171.PubMedCrossRefGoogle Scholar
  3. 3.
    Montreuil, J., Bouquelet, S., Debray, H., Fournet, B., Spik, G., and Strecker, G. (1986) Glycoproteins, in Carbohydrate Analysis: A Practical Approach (Chaplin, M. F. and Kennedy, J. F., eds.), Academic Press, Oxford, pp. 143–204.Google Scholar
  4. 4.
    Baenziger, J. U. (1984) The oligosaccharides of plasma glycoproteins: synthesis, structure and function, in The Plasma Proteins, Vol. 4 (Putnam, F. W., ed.), Academic Press, New York, pp. 272–315.Google Scholar
  5. 5.
    Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.PubMedCrossRefGoogle Scholar
  6. 6.
    Berger, E. G., Buddecke, E., Kamerling, J. P., Kobata, A., Paulson, J. C., and Vliegenthart, J. F. G. (1982) Structure, biosynthesis and functions of glycoprotein glycans. Experientia 38, 1129–1158.PubMedCrossRefGoogle Scholar
  7. 7.
    Lundy, F. T. and Wisdom, G. B. (1992) The determination of asialoglycoforms of serum glycoproteins by lectin blotting with Ricinus communis agglutinin. Clin. Chim. Acta 205, 187–195.PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson, S. and Turner, G. A. (1987) Elevated levels of abnormally-fucosylated haptoglobins in cancer sera. Br. J. Cancer 56, 605–610.PubMedCrossRefGoogle Scholar
  9. 9.
    Stibler, H. and Borg, S. (1981) Evidence of a reduced sialic acid content in serum transfer-rin in male alcoholics. Alcohol. Clin. Exp. Res. 5, 545–549.PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi, M., Tsujioka, Y., Yamada, T., Tsuboi, Y., Okada, H., Yamamoto, T., and Liposits, Z. (1999) Glycosylation of microtubule-associated protein tau in Alzheimer’s disease brain. Acta Neuropathol. 97, 635–641.PubMedCrossRefGoogle Scholar
  11. 11.
    Guevara, J., Espinosa, B., Zenteno, E., Vazquez, L., Luna, J., Perry, G., and Mena, R. (1998) Altered glycosylation pattern of proteins in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 905–914.PubMedCrossRefGoogle Scholar
  12. 12.
    Gravel, P., Walzer, C., Aubry, C., Balant, L. P., Yersin, B., Hochstrasser, D. F., and Guimon, J. (1996) New alterations of serum glycoproteins in alcoholic and cirrhotic patients revealed by high resolution two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 220, 78–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Clamp, J. R. (1984) The oligosaccharides of plasma protein, in The Plasma Proteins, Vol. 2 (Putnam, F. W., ed.), Academic Press, New York, pp. 163–211.Google Scholar
  14. 14.
    Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools. Annu. Rev. Biochem. 55, 35–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldstein, I. J. and Hayes, C. E. (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 35, 127–340.PubMedCrossRefGoogle Scholar
  16. 16.
    Goldstein, I. J. and Poretz, R. D. (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins, in The Lectins: Properties, Functions and Applications in Biology and Medicine (Liener, I. E., Sharon, N., and Goldstein, I. J., eds.), Academic Press, Orlando, pp. 35–247.Google Scholar
  17. 17.
    Osawa, T. and Tsuji, T. (1987) Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu. Rev. Biochem. 56, 21–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Bhavanandan, V. P. and Katlic, A. W. (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J. Biol. Chem. 254, 4000–4008.PubMedGoogle Scholar
  19. 19.
    Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117, 41–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaifu, R. and Osawa, T. (1976) Synthesis of O-β-D-galactopyranosyl-(1-4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1-2)-n-mannose and its interaction with various lectins. Carbohydr. Res. 52, 179–185.PubMedCrossRefGoogle Scholar
  21. 21.
    Animashaun, T. and Hughes, R. C. (1989) Bowringia milbraedii agglutinin. Specificity of binding to early processing intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum glycoproteins. J. Biol. Chem. 264, 4657–4663.PubMedGoogle Scholar
  22. 22.
    Haselbeck, A., Schickaneder, E., rVon der Eltz, H., and Hosel, W. (1990) Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labeled lectins on blots. Analyt. Biochem. 191, 25–30,.PubMedCrossRefGoogle Scholar
  23. 23.
    Sueyoshi, S., Tsuji, T., and Osawa, T. (1988) Carbohydrate-binding specificities of five lectins that bind to O-glycosyl-linked carbohydrate chains. Quantitative analysis by frontal-affinity chromatography. Carbohydr. Res. 178, 213–224.PubMedCrossRefGoogle Scholar
  24. 24.
    Cummings, R. D. and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11,230–11,234.PubMedGoogle Scholar
  25. 25.
    Pereira, M. E. A. and Kabat, E. A. (1974) Blood group specificity of the lectin from lotus tetragonolobus. Ann. NYAcad. Sci. 334, 301–305.CrossRefGoogle Scholar
  26. 26.
    Debray, H. and Montreuil, J. (1989) Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr. Res. 185, 15–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J. (1987) The elderberry (sambucus nigra l.) bark lectin recognizes the Neu5Ac (α2-6) Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601.PubMedGoogle Scholar
  28. 28.
    Wang, W. C. and Cummings, R. D. (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–4585.PubMedGoogle Scholar
  29. 29.
    Cohen, E., Roberts, S. C., Nordling, S., and Uhlenbruck, G. (1972) Specificity of Limulus polyphemus agglutinins for erythrocyte receptor sites common to M and N antigenic determinants. Vox Sang. 23, 300–307.PubMedCrossRefGoogle Scholar
  30. 30.
    Appel, R. D., Sanchez, J. C., Bairoch, A., Golaz, O., Miu, M., Vargas, J. R., and Hochstrasser, D. F. (1993) Swiss-2D PAGE: a database of two-dimensional gel electrophoresis mages. Electrophoresis 14, 1232–1238.PubMedCrossRefGoogle Scholar
  31. 31.
    Jadach, J. and Turner, G. A. (1993) An ultrasensitive technique for the analysis of glycoproteins using lecting blotting enhanced chemiluminescence. Analyt. Biochem. 212, 293–295.PubMedCrossRefGoogle Scholar
  32. 32.
    Gravel, P., Golaz, O., Walzer, C., Hochstrasser, D. F., Turler, H., and Balant, L. P. (1994) Analysis of glycoproteins separated by two-dimensional gel electrophoresis using lectin blotting revealed by chemiluminescence. Analyt. Biochem. 221, 66–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Sanchez, J. C., Ravier, F., Pasquali, C., Frutiger, S., Bjellqvist, B., Hochstrasser, D. F., and Hughes, G. J. (1992) Improving the detection of proteins after transfer to polyvinylidene difluoride membranes. Electrophoresis 13, 715–717.PubMedCrossRefGoogle Scholar
  34. 34.
    Becker, B., Salzburg, M., and Melkonian, M. (1993) Blot analysis of glycoconjugates using digoxigenin-labeled lectins: an optimized procedure. BioTechniques 15, 232–235.PubMedGoogle Scholar
  35. 35.
    Garfin, D. E. and Bers, G. (1982) Basic aspects of protein blotting, in Protein Blotting (Baldo, B. A. and Tovey, E. R., eds.), Karger, Basel, pp. 5–42.Google Scholar
  36. 36.
    Durrant, I. (1990) Light-based detection of biomolecules. Nature 346, 297–298.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Patricia Gravel
    • 1
  1. 1.Triskel Integrated ServicesGenevaSwitzerland

Personalised recommendations