Advertisement

Peptide Sequencing by Nanoelectrospray Tandem Mass Spectrometry

  • Ole Nørregaard Jensen
  • Matthias Wilm
Protocol
  • 111 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Electrospray ionization mass spectrometry (ESI-MS) (1) has had a profound influence on biological research over the last decade. With this technique it is possible to generate and characterize gas-phase analyte ions from aqueous solutions of proteins, peptides, and other classes of biomolecules. ESI is performed at atmospheric pressure, which simplifies sample preparation and handling and allows on-line coupling of chromatography, such as capillary high-performance liquid chromatography (HPLC), to mass spectrometers (LC-MS). The use of ESI in combination with tandem mass spectrometry (MS/MS) provides the capability for amino acid sequencing of peptides. The optimization and miniaturization of peptide sample preparation methods for ESI as well as the development of highly sensitive tandem mass spectrometers, such as triple quadrupoles, ion traps, and quadrupole-time-of-flight (Q-TOF) hybrid instruments, makes it possible and almost routine to obtain amino acid sequences from subpicomole levels of protein in many laboratories. Peptide sequencing is typically performed by nanoelectrospray MS/MS analysis of crude, concentrated peptide mixtures or by hyphenated techniques, such as capillary HPLC coupled to micro/ nanoelectrospray-MS/MS. The sets of peptide tandem mass spectra generated in such experiments are used to query biological sequence databases with the aim to identify all protein components present in the sample. In this chapter we describe practical aspects of nanoelectrospray mass spectrometry aimed at amino acid sequencing of peptides at subpicomole levels. We do not consider LC-MS/MS, although many of the features of the two analytical approaches are very similar.

Keywords

Tryptic Peptide Tandem Mass Spectrum Chromatographic Resin Nanoelectrospray Mass Spectrometry Peptide Tandem Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for the mass spectrometry of large biomolecules. Science 246, 64–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilm, M. S. and Mann, M. (1994) Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last ? Int. J. Mass Spectrom. Ion Proces. 136, 167–180.CrossRefGoogle Scholar
  3. 3.
    Wilm, M. and Mann, M. (1996) Analytical properties of the nano electrospray ion source. Analyt. Chem. 66, 1–8.CrossRefGoogle Scholar
  4. 4.
    Wilm, M. and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano electrospray mass spectrometry. Nature 379, 466–469.PubMedCrossRefGoogle Scholar
  5. 5.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Analyt. Chem. 68, 850–858.Google Scholar
  6. 6.
    Roepstorff, P. and Fohlmann, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601.PubMedCrossRefGoogle Scholar
  7. 7.
    Biemann, K. (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed. Environm. Mass Spectrom. 16, 99–111.CrossRefGoogle Scholar
  8. 8.
    Jensen, O. N., Wilm, M., Shevchenko, A., and Mann, M. (1999) Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Meth. Mol. Biol. 112, 513–530.Google Scholar
  9. 9.
    Kriger, M. S., Cook, K. D., and Ramsey, R. S. (1995) Durable gold coated fused silica capillaries for use in electrospray mass spectrometry. Analyt. Chem. 67, 385–389.CrossRefGoogle Scholar
  10. 10.
    Valaskovic, G. A. and McLafferty, F. W. (1996) Long-lived metallized tips for nanoliter electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 7, 1270–1272.CrossRefGoogle Scholar
  11. 11.
    Taylor, G. (1964) Taylor cone theory. Proc. R. Soc. London Ser. A. 280, 383 (1964).CrossRefGoogle Scholar
  12. 12.
    Morand, K., Talbo, G., and Mann, M. (1993) Oxidation of peptides during electrospray ionization. Rapid Commun. Mass Spectrom. 7, 738–743.PubMedCrossRefGoogle Scholar
  13. 13.
    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ ionization mass spectrometry. J. Mass Spectrom. 34, 105–116.PubMedCrossRefGoogle Scholar
  14. 14.
    Erdjument-Bromage, H., et al. (1998) Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J. Chromatogr. A. 826, 167–181.PubMedCrossRefGoogle Scholar
  15. 15.
    Posewitz, M., and Tempst, P. (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Analyt. Chem. 71, 2883–2892.CrossRefGoogle Scholar
  16. 16.
    Stensballe, A., Andersen, S., and Jensen, O. N. (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1, 207–222.PubMedCrossRefGoogle Scholar
  17. 17.
    Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S., and Hauer, C. R. (1986) Peptide Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237.PubMedCrossRefGoogle Scholar
  18. 18.
    Biemann, K., and Scoble, H. A. (1987) Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237, 992.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilm, M., Neubauer, G., and Mann, M. (1996) Parent ion scans of unseparated peptide mixtures. Analyt. Chem. 68, 527–533.CrossRefGoogle Scholar
  20. 20.
    Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Analyt. Biochem. 239, 180–192.PubMedCrossRefGoogle Scholar
  21. 21.
    Huddleston, M. J., Annan, R. S., Bean, M. T., and Carr, S. A. (1993) Selective detection of 5phosphopeptides in complex mixtures by electrospray liquid chromatography Mass Spectrom. J. Am. Soc. Mass Spectrom. 4, 710–717.CrossRefGoogle Scholar
  22. 22.
    Carr, S. A., Huddleston, M. J., and Bean, M. F. (1993) Selective identification and differentiation of N-and O-linked oligosaccharides in glycoproteins by liquid chromatographymass spectrometry. Prot. Sci. 2, 183–196.CrossRefGoogle Scholar
  23. 23.
    Neubauer, G. and Mann, M. (1997) Parent ion scans of large molecules. J. Mass Spectrom. 32, 94–98.CrossRefGoogle Scholar
  24. 24.
    Steen, H. and Mann, M. (2001) Precursor scan on QTOF. Analyt. Chem. (in press).Google Scholar
  25. 25.
    Mann, M. and Wilm, M. S. (1994) Error tolerant identification of peptides in sequence databases by peptide sequence tags. Analyt. Chem. 66, 4390–4399.CrossRefGoogle Scholar
  26. 26.
    Shevchenko, A., Chemushevich, I., and Ens, W. (1997) Rapid de novo pept5-ide sequencing by a combination of nanoelectrospray, isotope labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015–1024.PubMedCrossRefGoogle Scholar
  27. 27.
    Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.PubMedCrossRefGoogle Scholar
  28. 28.
    Yates, J. R., 3rd, McCormack, A. L., and Eng, J. (1996) Mining genomes with MS. Analyt. Chem. 68, 534A–540A.CrossRefGoogle Scholar
  29. 29.
    Jiang, X., Smith, J. B., and Abraham, E. C. Identification of a MSMS diagnostic for methionine sulfoxide. J. Mass Spectrom. 31, 1309–1310.Google Scholar
  30. 30.
    Lagerwerf, F. M., van der Weert, M., Heerma, W., and Haverkamp, J. (1996) Identification of oxidized methionine in peptides. Rapid Commun. Mass Spectrom. 10, 1905–1910.PubMedCrossRefGoogle Scholar
  31. 31.
    Mann, M. (1996) A shortcut to interesting human genes: Peptide Sequence Tags, ESTs and Computers. Trends Biol. Sci. 21, 494–495.CrossRefGoogle Scholar
  32. 32.
    Mann, M. and Pandey, A. (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem. Sci. 26, 54–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Takao, T., et al. (1991) Facile assignment of sequence ions of a peptide labelledwith 18O at the carboxyl terminus. Rapid Commun. Mass Spectrom. 5, 312–315.PubMedCrossRefGoogle Scholar
  34. 34.
    Schnölzer, M., Jedrzejewski, P., and Lehmann, W. D. (1996) Protease catalyzed incorporation of 18-O into peptide fragments and its application for protein sequencing by electrospray and MALD ionization mass spectrometry. Electrophoresis 17, 945–953.PubMedCrossRefGoogle Scholar
  35. 35.
    Shevchenko, A., Wilm, M., and Mann, M. (1997) Peptide sequencing by mass spectrometry for homology searches and cloning of genes. J. Protein Chem. 16, 481–190.PubMedCrossRefGoogle Scholar
  36. 36.
    Jensen, O. N., Wilm, M., Shevchenko, A., and Mann, M. (1999) Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Meth. Mol. Biol. 112, 571–588.Google Scholar
  37. 37.
    Loboda, A. V., Krutchinsky, A. N., Bromirski, M., Ens, W., and Standing, K. G. (2000) A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 14, 1047–1057.PubMedCrossRefGoogle Scholar
  38. 38.
    Zubarev, R. A. (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Analyt. Chem. 72, 563–573.CrossRefGoogle Scholar
  39. 39.
    Kuster, B. and Mann, M. (1998) Identifying proteins and post-translational modifications by mass spectrometry. Curr. Opin. Struct. Biol. 8, 393–400.PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen, O. N. (Elsevier Science, 2000) Modification-specific proteomics, in Proteomics: A Trends Guide (Blackstock, W., ed.) (Elsevier, Amsterdam, pp. 36–42.)Google Scholar
  41. 41.
    Gygi, S. P., et al. (1999) Quantitative analysis of complex protein mixtures using isotopecoded affinity tags. Nat. Biotechnol. 17, 994–999.PubMedCrossRefGoogle Scholar
  42. 42.
    Link, A. J., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682.PubMedCrossRefGoogle Scholar
  43. 43.
    Yates, J. R., 3rd., (2000) Mass spectrometry. From genomics to proteomics. Trends Genet. 16, 5–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Tong, W., Link, A., Eng, J. K., and Yates, J. R., 3rd. (1999) Identification of proteins in complexes by solid-phase microextraction/multistep elution/capillary electrophoresis/tandem mass spectrometry. Analyt. Chem. 71, 22,770–22,788.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Ole Nørregaard Jensen
    • 1
  • Matthias Wilm
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyOdense UniversityDenmark
  2. 2.Department of Biochemistry and Molecular BiologyOdense UniversityDenmark

Personalised recommendations