Advertisement

Incorporation of Radiolabeled Prenyl Alcohols and Their Analogs into Mammalian Cell Proteins

A Useful Tool for Studying Protein Prenylation
  • Alberto Corsini
  • Christopher C. Farnsworth
  • Paul McGeady
  • Michael H. Gelb
  • John A. Glomset
Protocol
  • 96 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Prenylated proteins comprise a diverse family of proteins that are posttranslationally modified by either a farnesyl group or one or more geranylgeranyl groups (1-3). Recent studies suggest that members of this family are involved in a number of cellular processes, including cell signaling (4-6), differentiation (7-9), proliferation (10-12), cytoskeletal dynamics (13-15), and endocytic and exocytic transport (4,16,17). The authors’ studies have focused on the role of prenylated proteins in the cell cycle (18). Exposure of cultured cells to competitive inhibitors (statins) of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase not only blocks the biosynthesis of mevalonic acid (MVA), the biosynthetic precursor of both farnesyl and geranylgeranyl groups, but pleiotropically inhibits DNA replication and cell-cycle progression (10,18-20). Both phenomena can be prevented by the addition of exogenous MVA (10,18,19). The authors have observed that all-trans-geranylgeraniol (GGOH) and, in a few cases, all-trans-farnesol (FOH) can prevent the statin-induced inhibition of DNA synthesis (21). In an effort to understand the biochemical basis of these effects, the authors have developed methods for the labeling and two-dimensional gel analysis of prenylated proteins that should be widely applicable.

Keywords

Human Skin Fibroblast Mevalonic Acid Sodium Ethoxide Prenylated Protein Carrier Ampholyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhang, F. L. and Casey, P. J. (1996) Protein Prenylation: Molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269.PubMedCrossRefGoogle Scholar
  2. 2.
    Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1990) Prenyl proteins in eukariotic cells: a new type of membrane anchor. Trends Biochem. Sci. 15, 139–142.PubMedCrossRefGoogle Scholar
  3. 3.
    Maltese, W. A. (1990) Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J. 4, 3319–3328.PubMedGoogle Scholar
  4. 4.
    Glomset, J. A. and Farnsworth, C. C. (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu. Rev. CellBiol. 10, 181–205.CrossRefGoogle Scholar
  5. 5.
    Casey, P. J., Moomaw, J. F., Zhang, F. L., Higgins, J. B., and Thissen, J. A. (1994) Prenylation and G protein signaling, in Recent Progress in Hormone Research, Academic, New York.Google Scholar
  6. 6.
    Inglese, J., Koch, W. J., Touhara, K., and Lefkowitz, R. J. (1995) Gβγ interactions with pH domains and Ras-MPK signaling pathways. Trends Biochem. Sci. 20, 151–156.PubMedCrossRefGoogle Scholar
  7. 7.
    Marshall, M. S. (1995) Ras target proteins in eukaryotic cells. FASEB J. 9, 1311–1318.PubMedGoogle Scholar
  8. 8.
    Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J. (1992) Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA 89, 6403–6407.PubMedCrossRefGoogle Scholar
  9. 9.
    Boguski, M. S. and McCormick, F. (1993) Proteins regulating Ras and its relatives. Nature 365, 643–654.CrossRefGoogle Scholar
  10. 10.
    Jakobisiak, M., Bruno, S., Skiersky, J. S., and Darzynkiewicz, Z. (1991) Cell cycle-specific effects of lovastatin. Proc. Natl. Acad. Sci. USA 88, 3628–3632.PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor, S. J. and Shalloway, D. (1996) Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621–1627.PubMedCrossRefGoogle Scholar
  12. 12.
    Olson, M. F., Ashworth, A., and Hall, A. (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1 Science 269, 1270–1272.Google Scholar
  13. 13.
    Fenton, R. G., Kung, H., Longo, D. L., and Smith, M. R. (1992) Regulation of intracellular actin polymerization by prenylated cellular proteins. J. Cell Biol. 117, 347–356.PubMedCrossRefGoogle Scholar
  14. 14.
    Pittler, S. J., Fliester, S. J., Fisher, P. L., Keller, R. K., and Rapp, L. M. In vivo requirement of protein prenylation for maintenance of retinal cytoarchitecture and photoreceptor structure.J. CellBiol. 130, 431–439.Google Scholar
  15. 15.
    Tapon, N. and Hall, A. (1997) Rho, Rac, and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Zerial, M. and Stenmark, H. (1993) Rab GTPases in vesicular transport. Curr. Opin. Cell Biol. 5, 613–620.PubMedCrossRefGoogle Scholar
  17. 17.
    Novick, P. and Brennwald, P. (1993) Friends and family: the role of the Rab GTPases in vesicular traffic. Cell 75, 597–601.PubMedCrossRefGoogle Scholar
  18. 18.
    Raiteri, M., Arnaboldi, L., McGeady, P., Gelb, M. H., Verri, D., Tagliabue, C., Quarato, P., et al. (1997) Pharmacological control of the mevalonate pathway: effect on smooth muscle cell proliferation. J. Pharmacol. Exp. Ther. 281, 1144–1153.PubMedGoogle Scholar
  19. 19.
    Habenicht, A. J. R., Glomset, J. A., and Ross, R. (1980) Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J. Biol. Chem. 255, 5134–5140.PubMedGoogle Scholar
  20. 20.
    Goldstein, J. L. and Brown, M. S. (1990) Regulation of the mevalonate pathway. Nature 343, 425–430.PubMedCrossRefGoogle Scholar
  21. 21.
    Corsini, A., Mazzotti, M., Raiteri, M., Soma, M. R., Gabbiani, G., Fumagalli, R., and Paoletti, R. (1993) Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitor of HMG-CoA reductase. Atherosclerosis 101, 117–125.PubMedCrossRefGoogle Scholar
  22. 22.
    Crick, D. C., Waechter, C. J., and Andres, D. A. (1994) Utilization of geranylgeraniol for protein isoprenylation in C6 glial cells. Biochem. Biophys. Res. Commun. 205, 955–961.PubMedCrossRefGoogle Scholar
  23. 23.
    Crick, D. C., Andres, D. A., and Waechter, C. J. (1995) Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochem. Biophys. Res. Commun. 211, 590–599.PubMedCrossRefGoogle Scholar
  24. 24.
    Danesi, R., McLellan, C. A., and Myers, C. E. (1995) Specific labeling of isoprenylated proteins: application to study inhibitors of the posttranslational farnesylation and geranylgeranylation. Biochem. Biophys. Res. Commun. 206, 637–643.PubMedCrossRefGoogle Scholar
  25. 25.
    Shin-ichi, O., Watanabe, M., and Nishino, T. (1996) Identification and characterization of geranylgeraniol kinase and geranylgeranyl phosphate kinase from the Archebacterium Sulfolobus acidocaldarius. J. Biochem. 119, 541–547.Google Scholar
  26. 26.
    Westfall, D., Aboushadi, N., Shackelford, J. E., and Krisans, S. (1997) Metabolism of farnesol: phosphorylation of farnesol by rat liver microsomial and peroxisomal fractions. Biochem. Biophys. Res. Commun. 230, 562–568.PubMedCrossRefGoogle Scholar
  27. 27.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  28. 28.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  29. 29.
    Görg, A., Postel, W., and Günther, S. (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–546.PubMedCrossRefGoogle Scholar
  30. 30.
    Jungblutt, P., Thiede, B., Simny-Arndt, U., Müller, E.-C., Wittmann-Liebold, B., and Otto, A. (1997) Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 17, 839–847.CrossRefGoogle Scholar
  31. 31.
    O’Farrell, P. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  32. 32.
    Patton, W. F., Pluskal, M. G., Skea, W. M., Buecker, J. L., Lopez, M. F., Zimmermann, R., Lelanger, L. M., and Hatch, P. D. (1990) Development of a dedicated two-dimensional gel electrophoresis system that provides optimal pattern reproducibility and polypeptide resolution. BioTech. 8, 518–529.Google Scholar
  33. 33.
    Lopez, M. F. and Patton, W. F. (1990) Reproducibility of polypeptide spot positions in two-dimensional gels run using carrier ampholytes in the isolelectric focusing dimension. Electrophoresis 18, 338–343.CrossRefGoogle Scholar
  34. 34.
    Görg, A., Günther, B., Obermaier, C., Posch, A., and Weiss, W. (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt, R. A., Schneider, C. J., and Glomset, J. A. (1984) Evidence for post-translational incorporation of a product of mavalonic acid into Swiss 3T3 cell proteins. J. Biol. Chem. 259, 10,175–10,180.PubMedGoogle Scholar
  36. 36.
    Sanchez, J.-C., Rouge, V., Pisteur, M., Ravier, F., Tonella, L., Moosmayer, M., Wilkins, M. R., and Hochstrasser, D. F. (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18, 324–327.PubMedCrossRefGoogle Scholar
  37. 37.
    Huber, L. A., Ullrich, O., Takai, Y., Lütcke, A., Dupree, P., Olkkonen, et al. (1994) Mapping of Ras-related GTP-binding proteins by GTP overlay following two-dimensional gel electrophoresis. Proc. Natl. Acad. Sci. USA 91, 7874–7878.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Alberto Corsini
    • 1
  • Christopher C. Farnsworth
    • 2
  • Paul McGeady
    • 3
  • Michael H. Gelb
    • 4
  • John A. Glomset
    • 5
  1. 1.Department of Pharmacological SciencesUniversity of MilanItaly
  2. 2.Department of Protein ChemistryIMMUNEX CorporationSeattle
  3. 3.Department of ChemistryClark Atlanta UniversityGeorgia
  4. 4.Departments of Chemistry and BiochemistryUniversity of WashingtonSeattle
  5. 5.Howard Hughes Medical InstituteUniversity of WashingtonSeattle

Personalised recommendations