Immunoblotting of 2-D Electrophoresis Separated Proteins

  • Barbara Magi
  • Luca Bini
  • Sabrina Liberatori
  • Roberto Raggiaschi
  • Vitaliano Pallini
Part of the Springer Protocols Handbooks book series (SPH)


Electrotransfer (-blotting) of protein bands separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) onto nitrocellulose membranes allowed H. Towbin et al. (1) to exploit the specificity of the reaction between antibodies and protein epitopes, avoiding the interference of diffusion and denaturing reagents. Immunoreactive bands were detected by labeled “second antibody” or Protein A.


Transfer Buffer Chemical Staining Saran Wrap Immunoreactivity Pattern Immunoreactive Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Towbin, H., Staehlin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  2. 2.
    Burnette, W. N. (1981) Western blotting“: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analyt. Biochem. 112, 195–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J.-C., et al. (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 1023–1031.PubMedCrossRefGoogle Scholar
  4. 4.
    Corbett, J. M., Dunn, M. J., Posh, A., and Görg, A. (1994) Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205–1211.PubMedCrossRefGoogle Scholar
  5. 5.
    Kahn, P. (1995) From genome to proteome: looking at a cell’s proteins. Science 270, 369–370.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilkins, M. R., Sanchez, J.-C., Williams, K. L., and Hochstrasser, D. F. (1996) Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17, 830–838.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldfarb, M. (1999) Two-dimensional electrophoresis and computer imaging: quantitation of human milk casein. Electrophoresis 20, 870–874.PubMedCrossRefGoogle Scholar
  8. 8.
    Pitarch, A., Pardo, M., Jimenez, A., Pla, J., Gil, C., Sanchez, M., and Nombela, C. (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans. immunogenic proteins. Electrophoresis 20, 1001–1010.PubMedCrossRefGoogle Scholar
  9. 9.
    Sanchez-Campillo, M., Bini, L., Comanducci, M., Raggiaschi, R., Marzocchi, B., Pallini, V., and Ratti, G. (1999) Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 20, 2269–2279.PubMedCrossRefGoogle Scholar
  10. 10.
    Pini A., Viti, F., Santucci A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998) Design and use of a phage display library. J. Biol. Chem. 273, 21,769–21,776.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravn, P., Kjaer, S., Jensen, K. H., Wind, T., Jensen, K. B., Kristensen, P., et al. (2000) Identification of phage antibodies toward the Werner protein by selection on Western blots. Electrophoresis 21, 509–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanchez, J. C., Wirth, P., Jaccoud, S., Appel, R. D., Sarto, C., Wilkins, M. R., and Hochstrasser, D. F. (1997) Simultaneous analysis of cyclin and oncogene expression using multiple monoclonal antibody immunoblots. Electrophoresis 18, 638–641.PubMedCrossRefGoogle Scholar
  13. 13.
    Magi, B., Bini, L., Liberatori, S., Marzocchi, B., Raggiaschi, R., Arcuri, F., et al. (1998) Charge heterogeneity of macrophage migration inhibitory factor in human liver and breast tissue. Electrophoresis 19, 2010–2013.PubMedCrossRefGoogle Scholar
  14. 14.
    Janke, C., Holzer, M., Klose, J., and Arendt, T. (1996) Distribution of isoforms of the microtubule-associated protein tau in grey and white matter areas on human brain: a two dimensional gel electrophoretic analysis. FEBS Lett. 379, 222–226.PubMedCrossRefGoogle Scholar
  15. 15.
    Oda, T., Heaney, C., Hagopian, J. R., Griffin, J. D., and Druker, B. J. (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelog-enous leukemia. J. Biol. Chem. 269, 22,925–22,928.PubMedGoogle Scholar
  16. 16.
    Birkelund, S., Bini, L., Pallini, V., Sanchez-Campillo, M., Liberatori, S., Clausen, J. D., et al. (1997) Characterization of Chlamydia trachomatis L2 induced tyrosine phospho-rylated HeLa cell proteins by two-dimensional gel electrophoresis. Electrophoresis 18, 563–567.PubMedCrossRefGoogle Scholar
  17. 17.
    Reinhekel, T., Körn, S., Möhring, S., Augustin, W., Halangk, W., and Schild, L. (2000) Adaption of protein carbonyl detection to the requirements of proteome analysis demonstrated for hypoxia/reoxygenation in isolated rat liver mitochondria. Arch. Biochem. Biophys. 376, 59–65.CrossRefGoogle Scholar
  18. 18.
    Strong, M. J., Sopper, M. M., Crow, J. P., Strong, W. L., and Beckman, J. S. (1998) Nitra-tion of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem. Biophys. Res. Commun. 248, 157–164.PubMedCrossRefGoogle Scholar
  19. 19.
    Magi, B., Marzocchi, B., Bini, L., Cellesi, C., Rossolini, A., and Pallini, V. (1995) Two-dimensional electrophoresis of human serum proteins modified by ampicillin during therapeutic treatment. Electrophoresis 16, 1190–1192.PubMedCrossRefGoogle Scholar
  20. 20.
    Marzocchi, B., Magi, B., Bini, L., Cellesi, C., Rossolini, A., Massidda, O., and Pallini, V. (1995) Two-dimensional gel electrophoresis and immunoblotting of human serum albumin modified by reaction with penicillins. Electrophoresis 16, 851–853.PubMedCrossRefGoogle Scholar
  21. 21.
    Arthur, T. M. and Burgess, R. R. (1998) Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta’ subunit. J. Biol. Chem. 273, 31,381–31,387.PubMedCrossRefGoogle Scholar
  22. 22.
    Faust, M., Schuster, N., and Montenarh, M. (1999) Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett. 462, 51–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakatani, Y., Tanioka, T., Sunaga, S., Murakami, M., and Kudo, I. (2000) Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A2a. J. Biol. Chem. 275, 1161–1168.PubMedCrossRefGoogle Scholar
  24. 24.
    Bouvet, P., Diaz, J.-J., Kindbeiter, K., Madjar, J.-J. and Amalric, F. (1998) Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 273, 19,025–19,029.PubMedCrossRefGoogle Scholar
  25. 25.
    Makino, Y., Yoshida, T., Yogosawa, S., Tanaka, K., Muramatsu, M., and Tamura, T. A. (1999) Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells.4, 529–539.PubMedCrossRefGoogle Scholar
  26. 26.
    Fouassier, L., Yun, C. C., Fitz, J. G., and Doctor, R. B. (2000) Evidence for ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) self-association through PDZ-PDZ interactions. J. Biol. Chem. 275, 25,039–25,045.PubMedCrossRefGoogle Scholar
  27. 27.
    Pasquali, C., Vilbois, F., Curchod, M.-L., van Huijsduijnen, R. H., and Arigoni, F. (2000) Mapping and identification of protein-protein interactions by two-dimensional far-western immunoblotting. Electrophoresis 21, 3357–3368.PubMedCrossRefGoogle Scholar
  28. 28.
    Bernstein, D. I., Garraty, E., Lovett, M. A., and Bryson, Y. J. (1985) Comparison of western blot analysis to microneutralization for the detection of type-specific antibodies to herpes simplex virus antibodies. J. Med. Virol. 15, 223–230.PubMedCrossRefGoogle Scholar
  29. 29.
    Sanchez, J. C., Ravier, F., Pasquali, C., Frutiger, S., Paquet, N., Bjellqvist, B, et al. (1992) Improving the detection of proteins after transfer to polyvinylidene difluoride membranes. Electrophoresis 13, 715–717.PubMedCrossRefGoogle Scholar
  30. 30.
    Okamura, H., Sigal, C. T., Alland, L., and Resh, M. D. (1995) Rapid high-resolution Western blotting. Meth. Enzymol. 254, 535–550.PubMedCrossRefGoogle Scholar
  31. 31.
    Nielsen, P. J., Manchester, K. L., Towbin, H., Gordon, J., and Thomas, G. (1982) The phosphorylation of ribosomal protein S6 in rat tissues following cycloheximide injection, in diabetes, and after denervation of diaphragm. J. Biol. Chem. 257, 12,316–12,321.PubMedGoogle Scholar
  32. 32.
    Gershoni, J. M. and Palade, G. E. (1983) Protein blotting: principles and applications. Analyt. Biochem. 131, 1–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Gershoni, J. M. (1988) Protein blotting: a manual. Meth. Biochem. Analyt. 33, 1–58.CrossRefGoogle Scholar
  34. 34.
    Gershoni, J. M. and Palade, G. E. (1982) Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Analyt. Biochem. 124, 396–405.PubMedCrossRefGoogle Scholar
  35. 35.
    Birk, H.-W. and Koepsell, H. (1987) Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: renaturation of antigenic sites and reduction of nonspecific antibody binding. Analyt. Biochem. 164, 12–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Lauriere, M. (1993) A semidry electroblotting system efficiently transfers both high-and low-molecular weight proteins separated by SDS-PAGE. Analyt. Biochem. 212, 206–211.PubMedCrossRefGoogle Scholar
  37. 37.
    Pluskal, M. F., Przekop, M. B., Kavonian, M. R., Vecoli, C., and Hicks, D.A. (1986) ImmobilonTM PVDF transfer membrane. A new membrane substrate for Western blotting of proteins. BioTechniques 4, 272–282.Google Scholar
  38. 38.
    Gultekin, H. and Heermann, K. H. (1988) The use of polyvinylidenedifluoride membranes as a general blotting matrix. Analyt. Biochem. 172, 320–329PubMedCrossRefGoogle Scholar
  39. 39.
    Matsudaira, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10,035–10,038.PubMedGoogle Scholar
  40. 40.
    Ranganathan, V. and De, P. K. (1995) Western blot of proteins from Coomassie-stained polyacrylamide gels. Analyt. Biochem. 234, 102–104.CrossRefGoogle Scholar
  41. 41.
    Wise, G. E. and Lin, F. (1991) Transfer of silver-stained proteins from polyacrylamide gels to polyvinylidene difluoride membranes. J. Biochem. Biophys. Meth. 22, 223–231.PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez-Patron, C., Castellanos-Serra, L., and Rodriguez, P. (1992) Reverse staining of sodium dodecyl sulfate polyacrylamide gels by imidazole-zinc salts: sensitive detection of unmodified proteins. BioTechniques 12, 564–573.PubMedGoogle Scholar
  43. 43.
    Lin, W. and Kasamatsu, H. (1983) On the electrotransfer of polypeptides from gels to nitrocellulose membrane. Analyt. Biochem. 128, 302–311.PubMedCrossRefGoogle Scholar
  44. 44.
    Polvino, W. J., Saravis, C. A., Sampson, C. E., and Cook, R. B. (1983) Improved protein analysis on nitrocellulose membrane. Electrophoresis 4, 368–369.CrossRefGoogle Scholar
  45. 45.
    Eckerskorn, C. and Lottspeich, F. (1993) Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent aminoacid sequence analysis of proteins. Electrophoresis 14, 831–838.PubMedCrossRefGoogle Scholar
  46. 46.
    Szewczyk, B. and Kozloff, L. M. (1985) A method for the efficient blotting of strongly basic proteins from sodium dodecyl sulphate-polyacrylamide gels to nitrocellulose. Analyt. Biochem. 50, 403–407.CrossRefGoogle Scholar
  47. 47.
    Dunn, S. D. (1986) Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Analyt. Biochem. 157, 144–153.PubMedCrossRefGoogle Scholar
  48. 48.
    Salinovich, O. and Montelaro, R. C. (1986) Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacry-lamide gel electrophoresis. Analyt. Biochem. 156, 341–347.PubMedCrossRefGoogle Scholar
  49. 49.
    Reinhart, M. P. and Malamud, D. (1982) Protein transfer from isoelectric focusing gels: the native blot. Analyt. Biochem. 123, 229–235.PubMedCrossRefGoogle Scholar
  50. 50.
    Patton, W. F., Lam, L., Su, Q., Lui, M., Erdjument-Bromage, H., and Tempst, P. (1994) Metal chelates as reversible stains for detection of electroblotted proteins: application to protein microsequencing and immunoblotting. Analyt. Biochem. 220, 324–335.PubMedCrossRefGoogle Scholar
  51. 51.
    Root, D. D. and Reisler, E. (1989) Copper iodide staining of protein blots on nitrocellulose membranes. Analyt. Biochem. 181, 250–253.PubMedCrossRefGoogle Scholar
  52. 52.
    Hong, H.-Y., Yoo, G.-S., and Choi, J.-K. (2000) Direct Blue 71 staining of proteins bound to blotting membrane. Electrophoresis 21, 841–845.PubMedCrossRefGoogle Scholar
  53. 53.
    Berggren, K., Steinberg, T. H., Lauber, W. M., Carroll, J. A., Lopez, M. F., Cherno-kalskaya, E., et al. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Analyt. Biochem. 276, 129–143.PubMedCrossRefGoogle Scholar
  54. 54.
    Chevallet, M., Procaccio, V., and Rabilloud, T. (1997) A nonradioactive double detection method for the assignment of spots in two-dimensional blots. Analyt. Biochem. 251, 69–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Moeremans, M., Daneels, G., and De Mey, J. (1985) Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes. Analyt. Biochem. 145, 315–321.PubMedCrossRefGoogle Scholar
  56. 56.
    Daneels, G., Moeremans, M., De Raeymaeker, M., and De Mey, J. (1986) Sequential immunostaining (gold/silver) and complete protein staining (Aurodye) on Western blots. J. Immunol. Meth. 89, 89–91.CrossRefGoogle Scholar
  57. 57.
    Glenney, J. (1986) Antibody probing of Western blots which have been stained with India ink. Analyt. Biochem. 156, 315–319PubMedCrossRefGoogle Scholar
  58. 58.
    Batteiger, B., Newhall, W. J. V., and Jones, R. B. (1982) The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membrane. J. Immunol. Meth. 55, 297–307.CrossRefGoogle Scholar
  59. 59.
    Fultz, C. D. and Witzmann, F. A. (1997) Locating Western blotted and immunostained proteins within complex two-dimensional patterns. Analyt. Biochem. 251, 288–291.PubMedCrossRefGoogle Scholar
  60. 60.
    Zeindl-Eberhart, E., Jungblut, P. R, and Rabes, H. M. (1997) A new method to assign immunodetected spots in the complex two-dimensional electrophoresis pattern. Electro-phoresis 18, 799–801.CrossRefGoogle Scholar
  61. 61.
    Johansson, K. E. (1986) Double replica electroblotting: a method to produce two replicas from one gel. J. Biochem. Biophys. Meth. 13, 197–203.PubMedCrossRefGoogle Scholar
  62. 62.
    Neumann, H. and Mullner, S. (1998) Two replica blotting methods for fast immunological analysis of common proteins in two-dimensional electrophoresis. Electrophoresis 19, 752–757.PubMedCrossRefGoogle Scholar
  63. 63.
    Gotzmann, J. and Gerner, C. (2000) A method to produce Ponceau replicas from blots: application for Western analysis. Electrophoresis 21, 523–525.PubMedCrossRefGoogle Scholar
  64. 64.
    Kamps, M. P. (1991) Generation of anti-phosphotyrosine antibodies for immunoblotting. Meth. Enzymol. 201, 101–110.PubMedCrossRefGoogle Scholar
  65. 65.
    Michalewski, M. P., Kaczmarski, W., Golabek, A., Kida, E., Kaczmarski, A., and Wisniewski, K. E. (1999) Immunoblotting with antiphosphoaminoacid antibodies: importance of the blocking solution. Analyt. Biochem. 276, 254–257.PubMedCrossRefGoogle Scholar
  66. 66.
    Towbin, H. and Gordon, J. (1984) Immunoblotting and dot immunobinding. Current status and outlook. J. Immunol. Meth. 72, 313–340.CrossRefGoogle Scholar
  67. 67.
    Stott, D. I. (1989) Immunoblotting and dot blotting. J. Immunol. Meth. 119, 153–187.CrossRefGoogle Scholar
  68. 68.
    Poxton, I. R. (1990) Immunoblotting techniques. Curr. Opin. Immunol. 2, 905–909.CrossRefGoogle Scholar
  69. 69.
    Harper, D. R., Ming-Liu, K., and Kangro, H. O. (1990) Protein blotting: ten years on. J. Virol. Meth. 30, 25–40.CrossRefGoogle Scholar
  70. 70.
    Mohammad, K. and Esen, A. (1989) A blocking agent and a blocking step are not needed in ELISA, immunostaining dot-blots and Western blots. J. Immunol. Meth. 117, 141–145.CrossRefGoogle Scholar
  71. 71.
    Flanagan, S.D. and Yost, B. (1984) Calmodulin-binding proteins: visualization by 125I-cal-modulin overlay on blots quenched with Tween 20 or bovine serum albumin and poly(ethylene oxide). Analyt. Biochem. 140, 510–519.PubMedCrossRefGoogle Scholar
  72. 72.
    Hoffman, W. L. and Jump, A. A. (1986) Tween 20 removes antibodies and other proteins from nitrocellulose. J. Immunol. Meth. 94, 191–197.CrossRefGoogle Scholar
  73. 73.
    Sadra, A., Cinek, T., and Imboden, J. B. (2000) Multiple probing of an immunoblot membrane using a non-block technique: advantages in speed and sensitivity. Analyt. Biochem.. 278, 235–237.PubMedCrossRefGoogle Scholar
  74. 74.
    Krajewski, S., Zapata, J. M., and Reed, J. C. (1996) Detection of multiple antigens on Western blots. Analyt. Biochem. 236, 221–228.PubMedCrossRefGoogle Scholar
  75. 75.
    Bhatt, T. R., Taylor III, P. A., and Horodyski, F. M. (1997) Suppression of irrelevant signals in immunoblots by preconjugation of primary antibodies. BioTechniques 23, 1006–1010.Google Scholar
  76. 76.
    Wilkinson, D. (2000) Chemiluminescent techniques for Western blot detection let researcher shed their lead aprons. The Scientist 14, 29–32.Google Scholar
  77. 77.
    Hawkes, R., Niday, E., and Gordon, J. (1982) A dot-immunobinding assay for monoclonal and other antibodies. Analyt. Biochem. 119, 142–147.PubMedCrossRefGoogle Scholar
  78. 78.
    Steffen, W. and Linck, R. W. (1989) Multiple immunoblot: a sensitive technique to stain proteins and detect multiple antigens on a single two-dimensional replica. Electrophoresis. 10, 714–718.PubMedCrossRefGoogle Scholar
  79. 79.
    Lemkin, P. (1996) Matching 2-D gels on the Internet, in the Abstract Book of 2nd Siena 2-D Electrophoresis Meeting, 57, Siena, Sept. 16-18.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Barbara Magi
    • 1
  • Luca Bini
    • 1
  • Sabrina Liberatori
    • 1
  • Roberto Raggiaschi
    • 1
  • Vitaliano Pallini
    • 1
  1. 1.Department of Molecular BiologyUniversity of SienaItaly

Personalised recommendations