Advertisement

Acid-Urea-Triton Polyacrylamide Gel Electrophoresis of Histones

  • Jakob H. Waterborg
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Acid-urea polyacrylamide gels are capable of separating basic histone proteins provided they differ sufficiently in size and/or effective charge (see  Chapter 16). Separation between similarly sized and charged molecules, such as the histones H2A, H2B, and the H3 forms of most organisms, can typically not be achieved. Zweidler discovered that core histones but not linker histones (see Note 1) bind the nonionic detergent Triton (1). Generally, Triton is added to an acetic acid-urea (AU) gel system to separate core histone sequence variants and histone species with overlapping AU gel patterns. This type of gel is known as an AUT or a TAU gel. To date, a single example is known where addition of Triton X-100 has allowed separation of a nonhistone primary sequence variation, the hydrophobic replacement variant of phenylalanine by leucine in fetal hemoglobin (2).

Keywords

Core Histone Electrophoresis Buffer Hamilton Microsyringe Buffer Reservoir Concentrate Ammonium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zweidler, A. (1978) Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Meth. Cell Biol. 17, 223–233.CrossRefGoogle Scholar
  2. 2.
    Manca, L., Cherchi, L., De Rosa, M. C., Giardina, B., and Masala, B. (2000) A new, electrophoretically silent, fetal hemoglobin variant: Hb F-Calabria [Ggamma118 (GH1) Phe → Leu]. Hemoglobin 24, 37–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Urban, M. K., Franklin, S. G., and Zweidler, A. (1979) Isolation and characterization of the histone variants in chicken erythrocytes. Biochemistry 18, 3952–3960.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwager, S. L. U., Brandt, W. F., and Von Holt, C. (1983) The isolation of isohistones by preparative gel electrophoresis from embryos of the sea urchin Parechinus angulosus. Biochim. Biophys. Acta 741, 315–321.Google Scholar
  5. 5.
    Waterborg, J. H., Harrington, R. E., and Winicov, I. (1987) Histone variants and acetylated species from the alfalfa plant Medicago sativa. Arch. Biochem. Biophys. 256, 167–178.PubMedCrossRefGoogle Scholar
  6. 6.
    Bonner, W. M., West, M. H. P., and Stedman, J. D. (1980) Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur. J. Biochem. 109, 17–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Waterborg, J. H. (1992) Existence of two histone H3 variants in dicotyledonous plants and correlation between their acetylation and plant genome size. Plant Mol. Biol. 18, 181–187.PubMedCrossRefGoogle Scholar
  8. 8.
    Waterborg, J. H. (1991) Multiplicity of histone H3 variants in wheat, barley, rice and maize. Plant Physiol. 96, 453–458.PubMedCrossRefGoogle Scholar
  9. 9.
    Waterborg, J. H., Robertson, A. J., Tatar, D. L., Borza, C. M., and Davie, J. R. (1995) Histones of Chlamydomonas reinhardtii. Synthesis, acetylation and methylation. Plant Physiol. 109, 393–407.PubMedCrossRefGoogle Scholar
  10. 10.
    Waterborg, J. H. (2000) Steady-state levels of histone acetylation in Saccharomyces cerevisiae. J. Biol. Chem. 275, 13,007–13,011.PubMedCrossRefGoogle Scholar
  11. 11.
    Waterborg, J. H. and Matthews, H. R. (1983) Patterns of histone acetylation in the cell cycle of Physarum polycephalum. Biochemistry 22, 1489–1496.PubMedCrossRefGoogle Scholar
  12. 12.
    Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N. (1991) The nucleosomal core histone octamer at 3.1 Å resolution. A tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88, 10,138–10,148.CrossRefGoogle Scholar
  13. 13.
    Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389, 251–260.PubMedCrossRefGoogle Scholar
  14. 14.
    Sullivan, S. A., Aravind, L., Makalowska, I., Baxevanis, A. D., and Landsman, D. (2000) The histone database: a comprehensive WWW resource for histones and histone fold-containing proteins. Nucleic Acids Res. 28, 320–322.PubMedCrossRefGoogle Scholar
  15. 15.
    Waterborg, J. H. and yHarrington, R. E. (1987) Western blotting from acid-urea-Triton-and sodium dodecyl sulfate-polyacrylamide gels. Analyt. Biochem. 162, 430–434.PubMedCrossRefGoogle Scholar
  16. 16.
    Delcuve, G. P. and Davie, J. R. (1992) Western blotting and immunochemical detection of histones electrophoretically resolved on acid-urea-Triton-and sodium dodecyl sulfate-polyacrylamide gels. Analyt. Biochem. 200, 339–341.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Jakob H. Waterborg
    • 1
  1. 1.Cell Biology & BiophysicsUniversity of Missouri-Kansas CityKansas City

Personalised recommendations