Advertisement

Bacterial Expression, Purification, and Characterization of Single-Chain Antibodies

  • Sergey M. Kipriyanov
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

In the past few years, some of the limitations of monoclonal antibodies as therapeutic and diagnostic agents have been addressed by genetic engineering. Such an approach is particularly suitable because of the domain structure of the antibody molecule, where functional domains carrying antigen-binding activities (Fabs or Fvs) or effector functions (Fc) can be exchanged between antibodies Fig. 1 A). Smaller antibody-derived molecules include enzymatically produced 50-kDa Fab fragments and engineered 25-kDa single-chain Fv (scFv) consisting of the heavy and light chain variable regions (VH and VL) connected by a flexible 14-24 amino acid long peptide linker (1,2) Fig. 1 B). Compared to IgG molecules, scFv exhibit significantly improved tumor specificity and intratumoral penetration (3-5). However, the rapid blood clearance and monovalent nature of scFv fragments result in considerably lower quantitative tumor retention of these molecules (3,6).

Keywords

Amersham Pharmacia Biotech Antibody Fragment Glycine Betaine Immobilize Metal Affinity Chromatography scFv Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.PubMedCrossRefGoogle Scholar
  2. 2.
    Huston, J. S., Levinson, D., Mudgett Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., et al. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.CrossRefGoogle Scholar
  3. 3.
    Milenic, D. E., Yokota, T., Filpula, D. R., Finkelman, M. A., Dodd, S. W., Wood, J. F., et al. (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363–6371.PubMedGoogle Scholar
  4. 4.
    Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408.PubMedGoogle Scholar
  5. 5.
    Yokota, T., Milenic, D. E., Whitlow, M., Wood, J. F., Hubert, S. L., and Schlom, J. (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res. 53, 3776–3783.PubMedGoogle Scholar
  6. 6.
    Adams, G. P., McCartney, J. E., Tai, M. S., Oppermann, H., Huston, J. S., Stafford, W. F., et al. (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53, 4026–4034.PubMedGoogle Scholar
  7. 7.
    Gruber, M., Schodin, B. A., Wilson, E. R., and Kranz, D. M. (1994) Efficient tumor cell lysis mediated by a bispecific single-chain antibody expressed in Escherichia coli. J. Immunol. 152, 5368–5374.PubMedGoogle Scholar
  8. 8.
    Kurucz, I., Titus, J. A., Jost, C. R., Jacobus, C. M., and Segal, D. M. (1995) Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria. J. Immunol. 154, 4576–4582.PubMedGoogle Scholar
  9. 9.
    Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., Von der Lieth, C. W., Matys, E. R., and Little, M. (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Kontermann, R. E. and Müller, R. (1999) Intracellular and cell surface displayed single-chain diabodies. J. Immunol. Meth. 226, 179–188.CrossRefGoogle Scholar
  11. 11.
    Kipriyanov, S. M. and Little, M. (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12, 173–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Pugsley, A. P. (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57, 50–108.PubMedGoogle Scholar
  13. 13.
    Whitlow, M. and Filpula, D. (1991) Single-chain Fv proteins and their fusion proteins. Meth. Comp. Meth. Enzymol. 2, 97–105.CrossRefGoogle Scholar
  14. 14.
    Kipriyanov, S. M., Dübel, S., Breitling, F., Kontermann, R. E., and Little, M. (1994) Recombinant single-chain Fv fragments carrying C-terminal cysteine residues: production of bivalent and biotinylated miniantibodies. Mol. Immunol. 31, 1047–1058.PubMedCrossRefGoogle Scholar
  15. 15.
    Plückthun, A. (1994) Antibodies from Escherichia coli, in Handbook of Experimental Pharmacology, Vol. 113: The Pharmacology of Monoclonal Antibodies (Rosenberg, M. and Moore, G. P., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 269–315.Google Scholar
  16. 16.
    Hockney, R. C. (1994) Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12, 456–463.Google Scholar
  17. 17.
    Knappik, A. and Plückthun, A. (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Kipriyanov, S. M., Moldenhauer, G., Martin, A. C. R., Kupriyanova, O. A., and Little, M. (1997) Two amino acid mutations in an anti-human CD3 single-chain Fv antibody fragment that affect the yield on bacterial secretion but not the affinity. Protein Eng. 10, 445–453.PubMedCrossRefGoogle Scholar
  19. 19.
    Duenas, M., Vazquez, J., Ayala, M., Soderlind, E., Ohlin, M., Perez, L., et al. (1994) Intra-and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins. BioTechniques 16, 476–477.PubMedGoogle Scholar
  20. 20.
    Knappik, A., Krebber, C., and Plückthun, A. (1993) The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11, 77–83.Google Scholar
  21. 21.
    Bothmann, H. and Plückthun, A. (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17,100–17,105.PubMedCrossRefGoogle Scholar
  22. 22.
    Bothmann, H. and Plückthun, A. (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380.PubMedCrossRefGoogle Scholar
  23. 23.
    Skerra, A. and Plückthun, A. (1991) Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng. 4, 971–979.PubMedCrossRefGoogle Scholar
  24. 24.
    Sawyer, J. R., Schlom, J., and Kashmiri, S. V. S. (1994) The effect of induction conditions on production of a soluble anti-tumor sFv in Escherichia coli. Protein Eng. 7, 1401–1406.Google Scholar
  25. 25.
    Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1997) High level production of soluble single-chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Meth. 200, 69–77.CrossRefGoogle Scholar
  26. 26.
    Kipriyanov, S. M. and Little, M. (1997) Affinity purification of tagged recombinant pro-teins using immobilized single-chain Fv fragments. Analyt. Biochem. 244, 189–191.PubMedCrossRefGoogle Scholar
  27. 27.
    Arnold-Schild, D., Kleist, C., Welschof, M., Opelz, G., Rammensee, H. G., Schild, H., and Terness, P. (2000) One-step single-chain Fv recombinant antibody-based purification of gp96 for vaccine development. Cancer Res. 60, 4175–4178.PubMedGoogle Scholar
  28. 28.
    Casey, J. L., Keep, P. A., Chester, K. A., Robson, L., Hawkins, R. E., and Begent, R. H. (1995) Purification of bacterially expressed single-chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Meth. 179, 105–116.CrossRefGoogle Scholar
  29. 29.
    Kipriyanov, S. M., Moldenhauer, G., Strauss, G., and Little, M. (1998) Bispecific CD3 × CD19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer 77, 763–772.PubMedCrossRefGoogle Scholar
  30. 30.
    Müller, K. M., Arndt, K. M., Bauer, K., and Plückthun, A. (1998) Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins-evaluation of two anti-His-tag monoclonal antibodies. Analyt. Biochem. 259, 54–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Schulze, R. A., Kontermann, R. E., Queitsch, I., Dübel, S., and Bautz, E. K. (1994) Thiophilic adsorption chromatography of recombinant single-chain antibody fragments. Analyt. Biochem. 220, 212–214.PubMedCrossRefGoogle Scholar
  32. 32.
    Müller, K. M., Arndt, K. M., and Plückthun, A. (1998) A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 432, 45–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Maurer, R., Meyer, B., and Ptashne, M. (1980) Gene regulation at the right operator (OR) bacteriophage λ. I. OR3 and autogenous negative control by repressor. J. Mol. Biol. 139, 147–161.PubMedCrossRefGoogle Scholar
  34. 34.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  35. 35.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  36. 36.
    Horn, U., Strittmatter, W., Krebber, A., Knupfer, U., Kujau, M., Wenderoth, R., et al. (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46, 524–532.PubMedCrossRefGoogle Scholar
  37. 37.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  38. 38.
    Cochlovius, B., Kipriyanov, S. M., Stassar, M. J., Schuhmacher, J., Benner, A., Molden-hauer, G., and Little, M. (2000) Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 × CD19 tandem diabody, and CD28 costimulation. Cancer Res. 60, 4336–4341.PubMedGoogle Scholar
  39. 39.
    Le Gall, F., Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1999) Di-, tri-and tetra-meric single-chain Fv antibody fragments against human CD19: effect of valency on cell binding. FEBS Lett. 453, 164–168.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Sergey M. Kipriyanov
    • 1
  1. 1.Affimed Therapeutics AGLadenburgGermany

Personalised recommendations