Primer-Directed Site-Specific Mutagenesis

  • Michael J. O’Donohue
  • G. Geoff Kneale
Part of the Springer Protocols Handbooks book series (SPH)


Site-directed mutagenesis provides a powerful means for probing protein structure and function. Using this approach, one can introduce specific amino acid changes at any given position in the protein sequence and test the functional consequences of these mutations in vitro or in vivo. If an in vivo test is available, strategies that introduce random base changes at a given codon (or indeed in a larger region of the protein) are particularly valuable.


Sodium Acetate Solution Ethidium Bromide Solution Primer Extension Reaction Mutagenic Oligonucleotide Mutagenesis Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hutchison, C. A., Phillips, S., Edgell, M., Gillam, S., Jahnke, P., and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence. J. Biol Chem. 253(18), 6551–6560.PubMedGoogle Scholar
  2. 2.
    Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.PubMedCrossRefGoogle Scholar
  3. 3.
    Deng, W. P. and Nickoloff, J. A. (1992) Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200, 81-88.Google Scholar
  4. 4.
    Taylor, J. W., Ott, J., and Eckstein, F. (1985) The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 13, 8765–8785.PubMedCrossRefGoogle Scholar
  5. 5.
    Sayers, J. R. and Eckstein, F. (1989) Site-directed mutagenesis, based on the phosphorothioate approach, in Protein Function: A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, UK, pp. 279–295.Google Scholar
  6. 6.
    Worrall, A. F. (1994) Site-directed mutagenesis by the cassette method, in Methods in Molecular Biology 30 (Kneale G. G., ed.), Humana Press Inc., Totowa, NJ, pp. 199–210.Google Scholar
  7. 7.
    Kegler-Ebo, D. M., Docktor, C. M., and DiMaio, D. (1994) Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes. Nucleic Acids Res. 22(9), 1593–1599.PubMedCrossRefGoogle Scholar
  8. 8.
    Barettino, D., Feigenbutz, M., Valcarcel, R., and Stunnenberg, H. G. (1994) Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 22(3), 541–542.PubMedCrossRefGoogle Scholar
  9. 9.
    Mikaelian, I. and Sergeant, A. (1992) A general and fast method to generate multiple site-directed mutations. Nucleic Acids Res. 20(2), 376.PubMedCrossRefGoogle Scholar
  10. 10.
    Picard, V., Ersdal-Badju, E., Lu, A., and Clark Bock, S. (1994) A rapid and efficient one-tube PCR-based muatgenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 22(13), 2587–2591.PubMedCrossRefGoogle Scholar
  11. 11.
    Goff, S. A., Short-Russell, S. R., and Dice, J. F. (1987) Efficient saturation mutagenesis of a pentapeptide coding sequence using mixed oligonucleotides. DNA 6(4), 381–388.PubMedCrossRefGoogle Scholar
  12. 12.
    Alber, T, Bell, J. A., Dao-Pin, S., Nicholson, H., Wozniak, J. A., Cook, S., and Matthews, B. W. (1988) Replacements of Pro86 in phage T4 lysosyme extend an α-helix but do not alter protein stability. Science 239, 631–635.PubMedCrossRefGoogle Scholar
  13. 13.
    Zabin, H. B. and Terwilliger, T. C. (1991) Isolation and characterization of temperature-sensitive mutants of the bacteriophage fl gene V protein. J. Mol. Biol. 279, 257–275.CrossRefGoogle Scholar
  14. 14.
    O’Donohue, M. J., Scarlett, G. P., and Kneale, G. G. (1993) Tyr 26 and Phe 73 are essential for full biological activity of the Fd gene V protein. FEMS Microbiol. Lett. 109, 219–224.PubMedCrossRefGoogle Scholar
  15. 15.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning—A laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  16. 16.
    Hanahan, D., Jessee, J., and Bloom, F. R. (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 104, 63–113.CrossRefGoogle Scholar
  17. 17.
    Taylor, J. W., Schmidt, W., Costick, R., Okrusek, A., and Eckstein, F. (1985) The use of phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. Nucleic Acids Res. 13, 8749–8764.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakayame, K. L. and Eckstein, F. (1986) Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 14, 9679–9698.CrossRefGoogle Scholar
  19. 19.
    Sayers, J. R., Schmidt, W., and Eckstein, F. (1988) 5′-3′ Exonucleases in phosphoro-thioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res. 16, 9027–9039.CrossRefGoogle Scholar
  20. 20.
    Jung, R., Scott, M. P., Oliviera, L. O., and Nielsen, N. C. (1992) A simple and efficient method for the oligodeoxyribonucleotide-directed mutagenesis of double-stranded plasmid DNA. Gene 111, 17–24.CrossRefGoogle Scholar
  21. 21.
    Piechocki, M. P. and Hines, R. N. (1994) Oligonucleotide design and optimized protocol for site-directed mutagenesis. Biotechniques 16(4), 702–707.PubMedGoogle Scholar
  22. 22.
    Hermes, J. D., Parekh, S. M., Blacklow, S. C., Koster, H., and Knowles, J. R. (1989) A reliable method for random muatgenesis: the generation of mutant libraries using spiked oligo-deoxyribonucleotide primers. Gene 84, 143–151.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Michael J. O’Donohue
    • 1
  • G. Geoff Kneale
    • 2
  1. 1.UBPB-Fractionnement EnzymatiqueINRA-Lille/ReimsReimsFrance
  2. 2.Biophysics LaboratoriesUniversity of PortsmouthPortsmouthUK

Personalised recommendations